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This thesis presents novel contributions to Markov Boundary Discovery (MBD) algo-
rithms, specifically concerning their usage of conditional independence (CI) tests. MBD
algorithms form a versatile class of algorithms which reveal the causal information present
in data sets. This makes MBD algorithms applicable in both causal inference problems
and in feature selection problems.

Due to the great importance of causal information in virtually all fields of science,
extracting it efficiently and accurately from data sets using MBD algorithms has been
researched intensively in the past and it is a topic of active research. However, the tests of
conditional independence required by these algorithms have not been studied as intensively,
in spite of being central to the algorithms. As a consequence, many MBD algorithms have
borrowed CI test design from one another without much variation. This is a serious issue
because the CI tests are a severe computational bottleneck for the algorithms, consuming
around 97% of their total running time and the accuracy of the CI tests is decisive for
their functioning.

The contributions presented in this thesis aim to alleviate this shortcoming. They
target two essential aspects of conditional independence tests, namely their computational
efficiency and the methodological evaluation of their accuracy. The theory on which
the contributions rely is fundamental, simple and well-established, yet in spite of their
simplicity, the improvements they bring are extremely effective, as shown in detail in the
thesis and in the published articles.

The first contribution: A study of Koller and Sahami’s algorithm

Chapter 3 of the thesis contains a case-study of the obsolete but influential algorithm
of Koller and Sahami (KS) [23]. It is widely regarded to be the first algorithm to employ
the information-theoretic concept of Markov boundaries, thus establishing a new class
of algorithms. It must be emphasized that the KS algorithm was originally published as
a feature selection algorithm, but it can also be applied in causal inference problems if
desired.

This case-study will focus not only on the KS algorithm itself, but also on the original
comparative experiment performed on the KS algorithm and another fundamental
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algorithm, Information Gain Thresholding (IGt). Also, a collection of novel optimiza-
tions will be discussed, optimizations which emerged from studying and implementing
KS. Designing and developing these optimizations was an essential stepping stone for the
development of the later contributions discussed in the following chapters of the thesis. The
aforementioned comparative experiment has been published in [9], while the optimizations
for the KS algorithm have been published in [10].

The KS algorithm is presented in detail and its two phases are discussed, namely
Gamma Calculation and Iterative Feature Removal. Both of these phases are
designed around two heuristics, γ and δ, originally expressed by Koller and Sahami as
Kullback-Leibler divergences, but they can be easily rewritten as conditional mutual
information instead. The γ heuristic is calculated for each pair of variables in the data set,
but only once, before the algorithm starts. Once the algorithm starts, it will use the values
of γ in each iteration to assemble approximate Markov boundaries for every variable that
has not yet been removed by previous iterations. The δ heuristic is then used to find the
strongest Markov boundary in that iteration. The variable corresponding to the strongest
boundary is removed from the data set. This way, the data set decreases in size with each
iteration, up to a preconfigured size of Q variables, at which the algorithm stops. Apart
from the Q parameter, the KS algorithm also takes a parameter K, which specifies the
number of variables to assemble the approximate Markov boundaries with.

The Information Gain Thresholding (IGt) algorithm is also presented and parallels
are drawn between IGt and KS. However, because IGt is so simple, it was used only as a
comparative baseline for the accuracy of KS.

The experiment that compares KS to IGt was performed on binary document-term
matrices constructed from the Reuters Corpus Volume 1. The algorithms were tasked to
select the variables (matrix columns) most relevant to a selected class, as specified by the
Corpus. After the algorithms made their selection, the reduced data sets were passed to
Naive Bayes Classifiers and their accuracy was measured with respect to the selected class.

In effect, the comparative experiment evaluates how capable the algorithms are at
capturing the classification relevance of the variables in the data set, as would be consumed
by a simple classifier. This experiment design was chosen because both algorithms are
usable as feature filters, namely they are algorithms that filter the features (variables) in a
data set in advance of a classifier, in order to increase the accuracy of the classifier, reduce
its complexity and make it consume less computational resources.

The experiment also performed Design Space Exploration on the two parameters of
the KS algorithm, K and Q. The results show that KS outperforms IGt in almost all
configurations, as was expected.

During the development of the algorithms and the experiment, novel optimization
opportunities for the KS algorithm were discovered, as discussed by the second part of
the chapter. Four such optimizations were implemented: Gamma Decomposition, the
Removed Features Database, In-iteration Parallelism and the Iteration Cache.
Of these four optimizations, the Removed Features Database is an infrastructural
improvement, while the other three are efficiency optimizations, reducing the time
needed by the KS algorithm to complete but without changing its output.

These original optimizations were evaluated in three individual experiments, each
experiment comparing the unoptimized KS with a variant of KS containing an optimization,
with the exception of the Removed Features Database, which was permanently enabled to
record the behavior of KS.
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The experiments contain original implementations of the KS algorithm, of IGt and of
the four optimizations for KS. The formal description of the KS algorithm presented in
this chapter is also original and has been published in [10].

The most effective optimization was the Iteration Cache, operating in the second phase
of the algorithm, which reduced the duration of KS to an average of 0.55%, which is
about 180 times faster, a remarkable acceleration. In comparison, In-iteration Parallelism
performed modestly, halving the duration of the second phase, while Gamma Decomposition
halved the duration of the first phase. It is important to note that the Iteration Cache is
based on an idea mentioned by Koller and Sahami themselves, but their idea was never
explored before.

The Gamma Decomposition optimization was not the most impressive one, but it
formed the foundation of what was to become the dcMI optimization, the second and
most significant contribution of the thesis, with efficiency gains far beyond expectations.

While the Iteration Cache makes the KS algorithm very efficient with respect to
computational resources, it must be emphasized that KS has been obsoleted for good
reasons: it is far from being the most accurate MBD algorithm and it cannot guarantee
that its output is correct because it relies on heuristics and approximations. It also requires
the specification of two parameters which cannot be determined straightforwardly. All
these issues have been addressed by subsequent algorithms.

The second contribution: Accelerating an entire class of algorithms

Chapter 4 of the thesis presents the dcMI optimization, a novel and original optimiza-
tion applicable to all algorithms that rely on conditional mutual information computed
repeatedly on permutations of the variables of a data set. Because the widely used sta-
tistical G-test itself is conditional mutual information, the potential impact of dcMI is
wide.

The dcMI optimization is surprisingly simple: conditional mutual information is
rewritten as a sum of joint entropy terms, which are then cached and intensively reused
across the computation of conditional mutual information for the variables of a data set.
This process was called decomposed conditional mutual information (dcMI). Note
that using dcMI does not change the result of the conditional mutual information – it is
not an approximation, but an equivalent decomposition.

Many Markov Boundary Discovery algorithms rely on the G-test to determine condi-
tional independence in their operation. And because the algorithms must systematically
apply the G-test on many permutations of variables (the two tested variables and the
variables in the conditioning set), the dcMI optimization has a significant effect on their
efficiency.

This chapter also includes an original analysis of the reuse factor of a data set,
exploitable by dcMI. The analysis proves that the reuse of the joint entropy terms scales
quadratically with the number of variables in the data set, therefore the efficiency gains
of dcMI become higher as the data set size increases, a remarkable property.

Also included is an original alternative method of computing the degrees of freedom
for a G-test, more efficient and more compatible with optimization structures than the
method widely used by MBD algorithms.

In order to empirically demonstrate the efficiency gains brought by dcMI, an experiment
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was performed: the highly efficient and accurate IPC-MB algorithm was configured to
apply the G-test optimized with dcMI on data sets that were synthetically generated from
publicly available Bayesian networks. The efficiency of this configuration of IPC-MB was
compared directly with the efficiency of IPC-MB with an unoptimized G-test, but also
with IPC-MB configured with implementations of the G-test enhanced with AD–trees,
which retrieve the needed probability distributions from either pre-built static AD–trees
or from dynamic AD–trees built at runtime.

The AD–tree is a special data structure which stores the sample counts of all the
possible combinations of variables from the data set, or of only a subset thereof, depending
on the type of AD–tree. Static AD–trees contain all the information needed to construct
every possible probability distribution of samples from the data set, which allows for
extremely fast G-tests but at the cost of nearly prohibitive memory consumption. This
type of AD–tree is built in one pass and must be completed before any query. On the other
hand, dynamic AD–trees are much more memory-efficient because they only expand
as needed by the queries made by the G-test, with only minimal loss in time efficiency.
The memory consumption remains relatively high, but it is far more manageable than
a static AD–tree. Both types of AD–trees share another important shortcoming: while
implementing them in source code is not particularly difficult, doing so efficiently is a
different matter, requiring much more effort and commitment.

Thus, four configurations of the G-test were evaluated: unoptimized, optimized with
static AD–trees, optimized with dynamic AD–trees and optimized with dcMI. The
evaluation was performed on data sets instantiated from two public Bayesian networks,
ALARM and ANDES, consisting of 37 variables and 223 variables respectively.

As expected, the dcMI optimization exhibited the greatest efficiency gains. However,
it was not expected that these gains would be as extreme as observed: dcMI caused the
G-test to be computed 21 times faster while simultaneously consuming 3.6 less memory
than the next most efficient configuration, the G-test with dynamic AD–tree. Given the
dimensions of the data set on which these extreme results were observed, namely 223
variables with 16, 000 samples, dcMI is indeed remarkable. Note that all configurations in
the experiment yielded the same values for every G-test performed. No configuration in
the experiment used any approximations or estimations.

This experiment contains original implementations of the IPC-MB algorithm, of the
four G-test configurations, including the implementation of dcMI with its characteristic
data structure, the Joint Entropy Table (JHT). Both static and dynamic AD–tree imple-
mentations were developed specifically for this experiment. These are very likely the most
efficient publicly available Python implementations of AD–trees. In order to use Bayesian
networks directly, an original grammar-based reader for the Bayesian Interchange Format
was implemented, along with a full-valued random sampler for Bayesian networks.

The third contribution: Evaluating MBD algorithms in ideal conditions

Chapter 5 of the thesis contains the description of an original methodological improve-
ment specific to the study, development, evaluation and validation of Markov Boundary
Discovery algorithms: the usage of the d-separation criterion as the conditional indepen-
dence (CI) test of the algorithms, computed directly on Bayesian networks, as opposed to
synthesizing random data sets from the networks and then applying statistical CI tests.
In laboratory conditions, where Bayesian networks are readily available, the d-separation
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criterion acts as a perfect CI test, providing ideal information to the algorithms, as
opposed to information extracted a data set subject to biases, randomness and sample
insufficiencies. This contribution originates from the work done on implementing the
IPC-MB algorithm for the second contribution, described in Chapter 4. During the
implementation of IPC-MB, it became obvious that a method of computing perfect CI
tests is necessary, in order to write proper automatic tests.

It is important to emphasize that automatic testing is at least as important in scientific
software as it is in commercial software. For this reason alone, algorithm researchers
should consider using the d-separation criterion when validating their implementations.
This chapter will also mention two MBD algorithms which were published with incorrect
behavior, an avoidable situation had the d-separation criterion been used during their
implementation.

By configuring an MBD algorithm to use the d-separation criterion as a CI test, applied
on a selected Bayesian network, the ideal laboratory conditions are achieved for the study
and development of existing or novel MBD algorithms. It is important to note that
removing the randomness of the synthetic data sets makes these conditions fully repeatable,
because d-separation is deterministic and there is no random data set involved. This
chapter of the thesis discusses this specific methodological improvement, as published
by Băncioiu and Brad [8].

Using d-separation when developing and evaluating MBD algorithms has four important
advantages: greatly simplifies automatic testing for the algorithm implementation;
provides quick feedback to the researcher, because d-separation is much faster to
compute on a Bayesian network than a statistical test on a data set; it reveals the true
behavior of the algorithm, unaffected by randomness or biases present in a synthetic
or real-world data set; allows for the design of novel performance metrics, useful to
study particular traits of the algorithms.

To exemplify the methodological advantages of using d-separation, two experiments
were performed. The first experiment was performed directly on Bayesian networks,
necessitating no data sets whatsoever. This experiment compared the absolute number
of CI tests and the average size of the conditioning sets in the CI tests performed by
two MBD algorithms, IPC-MB and IAMB. This reveals the true intrinsic behavior of the
algorithms, unaffected by external randomness. The second experiment was performed
by combining the Bayesian networks with data sets synthesized from them, in order to
reliably evaluate the data efficiency of the two algorithms. Data efficiency was evaluated
by measuring the average conditioning set size in CI tests for both algorithms, but also by
calculating the percentage of statistical CI tests performed by the algorithms that are
correct, i.e. in agreement with the d-separation criterion computed simultaneously with
the statistical CI test.

Therefore, on top of the methodological improvement of using d-separation, the chapter
also describes three proposed metrics, easily measurable when the d-separation criterion
is used and very difficult without it: the total number of perfect CI tests performed by
algorithms; the average conditioning set size of perfect CI tests; the percentage of accurate
statistical CI tests performed by algorithms when validated against the corresponding
perfect CI test (d-separation).

These two experiments required the original implementation of the IAMB algorithm;
IPC-MB was already available from the experiment presented in Chapter 4.
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Summary of contributions

The first contribution is a minor one, but it is built upon by the subsequent
contributions. It consists of a case-study of the highly influential algorithm of Koller and
Sahami (KS), first proposed in 1995 and now obsoleted by other algorithms. Due to its
simplicity, it lends itself to straightforward examination and discussion. Studying the KS
algorithm uncovered a simple trick that accelerated the computation of one of its heuristics.
This trick is not remarkable on its own, but it was later generalized and expanded into a
highly effective computational optimization, becoming the second contribution presented
in this thesis. The case-study of the KS algorithm forms Chapter 3 of the thesis.

The second contribution is significant and consists of the spectacularly effective
optimization of a computational step common to all the algorithms of interest, namely the
computation of conditional mutual information found at the heart of the statistical G-test.
It focuses on the theory underlying this computational step, often overlooked due to its
(deceptive) simplicity. Specifically, the optimization relies on the properties of entropy and
mutual information, the fundamental information-theoretic concepts, in order to exploit
a massive reuse of terms that appear after a simple mathematical decomposition. An
experimental evaluation, using the MBD algorithm named IPC-MB, revealed efficiency
gains two orders of magnitude greater than the next-best known comparable optimization,
while consuming far less computing resources and being simple to implement in source code.
As mentioned above, this optimization stems from the case-study of the KS algorithm.
It was named dcMI, an abbreviation of “decomposed conditional mutual information”.
Chapter 4 discusses dcMI in detail.

The third contribution is not concerned with how the Markov Boundary Discovery
algorithms function, but with how they are designed, tested, validated and evaluated.
Thus it is a methodological improvement. In short, this contribution consists of adding
evaluation and validation steps that provide the algorithms with perfect information at
runtime by relying on the d-separation criterion, a central aspect in the theoretical study of
Bayesian networks. By using d-separation when testing and evaluating Markov Boundary
Discovery algorithms, researchers can discover flaws in their algorithms far in advance of
publication and can better understand the runtime behavior of their algorithms. This
is not to say that researchers did not evaluate or validate their algorithms in the past.
However, virtually all published algorithms were validated using statistical tests performed
on randomly generated synthetic data sets of various sizes, which are a rich source of
unwanted unpredictability. Using the d-separation criterion removes all unpredictability
and randomness from the behavior of the algorithms, allowing them to operate in ideal
conditions and perform at their theoretical best. Of course, computing d-separation
requires the original Bayesian network, thus it is mostly limited to laboratory settings.
Chapter 5 covers the use of d-separation for this specific purpose.

All the source code developed for the experiments presented in this thesis has been
published under the GPLv3 as the Markov Boundary Toolkit (MBTK) [6], a Python
library for the study and development of MBD algorithms, currently consisting of almost
16,000 lines of code. MBTK includes original implementations of the KS, IGt, IPC-MB and
IAMB algorithms, of the dcMI optimization, of static and dynamic AD–trees, of the G-test
in four configurations (unoptimized, optimized with dcMI, optimized with static and
dynamic AD–trees) and of a simple algorithm for d-separation. MBTK also includes tools
for creating experiments: a Bayesian Interchange Format reader, a full-valued Bayesian
network sampler and an experimental pipeline with result analysis.

vii



Contents

1 Introduction 1

1.1 Relevance and applicability . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Constraint-based algorithms . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Score-based algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Probabilities and likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Bayes’ theorem. Likelihoods and belief. . . . . . . . . . . . . . . . . 11

2.1.2 Independence, marginal and conditional . . . . . . . . . . . . . . . 12

2.2 Fundamentals of information theory . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Statistical tests of independence . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 The G-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Bayesian network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Markov boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 D-separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 A theoretical framework for conditional likelihood maximization . . . . . . 19

2.7.1 Likelihood maximization . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.2 The likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.3 Joint and conditional likelihood . . . . . . . . . . . . . . . . . . . . 22

2.7.4 The appropriate likelihood function . . . . . . . . . . . . . . . . . . 23

2.7.5 Joint versus conditional likelihood . . . . . . . . . . . . . . . . . . . 24

2.7.6 A fundamental redefinition . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.7 Conditional likelihood and information theory . . . . . . . . . . . . 26

2.7.8 Decomposing the ` function . . . . . . . . . . . . . . . . . . . . . . 27

2.7.9 The first term of `: model quality . . . . . . . . . . . . . . . . . . . 28

2.7.10 The second term of `: feature quality . . . . . . . . . . . . . . . . . 29

2.7.11 The third term of `: unkown information . . . . . . . . . . . . . . . 29

3 A study of Koller and Sahami’s algorithm 31

3.1 Koller and Sahami’s algorithm, in detail . . . . . . . . . . . . . . . . . . . 32

xv



3.1.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Original experiment comparing KS with IGt . . . . . . . . . . . . . . . . . 37

3.2.1 Information Gain Thresholding (IGt) . . . . . . . . . . . . . . . . . 37

3.2.2 Design of the experiment . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 The dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Results of the experiment . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Novel optimizations for the KS algorithm . . . . . . . . . . . . . . . . . . . 47

3.3.1 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Optimizing Phase 1, Gamma Calculation . . . . . . . . . . . . . . . 50

3.3.3 Optimizing Phase 2, Iterative Feature Removal . . . . . . . . . . . 54

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Contributions in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Proposed method to accelerate an entire class of algorithms 65

4.1 Decomposed conditional mutual information . . . . . . . . . . . . . . . . . 66

4.1.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Quantifying reuse of joint entropy terms . . . . . . . . . . . . . . . 68

4.2 Evaluation experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Experiment design and implementation . . . . . . . . . . . . . . . . 71

4.2.2 Computing the degrees of freedom of each G-test . . . . . . . . . . 72

4.2.3 GDefault, unoptimized . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.4 GStADt, optimized with a static AD–tree . . . . . . . . . . . . . . 73

4.2.5 GDyADt, optimized with a dynamic AD–tree . . . . . . . . . . . . 75

4.2.6 GdcMI, optimized with dcMI . . . . . . . . . . . . . . . . . . . . . 76

4.2.7 The IPC-MB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Contributions in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Evaluating MBD algorithms in ideal conditions 85

5.1 The BN subexperiment: true behavior . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Configuring IAMB with d-separation . . . . . . . . . . . . . . . . . 87

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 The DS subexperiment: CI test accuracy . . . . . . . . . . . . . . . . . . . 89

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xvi



5.4 Contributions in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusions 95

6.1 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Summary of contributions 97

7.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A Bayesian networks 100

xvii



Bibliography

[1] Lark - a parsing toolkit for python, 2020. URL https://github.com/lark-parser/
lark.

[2] Constantin F Aliferis, Ioannis Tsamardinos, and Alexander Statnikov. Hiton: a novel
Markov blanket algorithm for optimal variable selection. In AMIA Annual Symposium
Proceedings, volume 2003, page 21. American Medical Informatics Association, 2003.

[3] Constantin F Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani,
and Xenofon D Koutsoukos. Local causal and markov blanket induction for causal
discovery and feature selection for classification part i: algorithms and empirical
evaluation. Journal of Machine Learning Research, 11(1), 2010.

[4] Iain Bancarz. Conditional-Entropy Metrics for Feature Selection. PhD thesis, Uni-
versity of Edinburgh. College of Science and Engineering. School of Informatics.,
2005.

[5] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján. Conditional likeli-
hood maximisation: a unifying framework for information theoretic feature selection.
Journal of machine learning research, 13(Jan):27–66, 2012.

[6] Camil Băncioiu. MBTK, a library for studying Markov boundary algorithms. https:
//github.com/camilbancioiu/mbtk, 2020.

[7] Camil Băncioiu and Remus Brad. Accelerating causal inference and feature selection
methods through G-test computation reuse. Entropy, 23(11), 2021. ISSN 1099-4300.
doi: 10.3390/e23111501. URL https://www.mdpi.com/1099-4300/23/11/1501.

[8] Camil Băncioiu and Remus Brad. Analyzing markov boundary discovery algorithms in
ideal conditions using the d-separation criterion. Algorithms, 15(4), 2022. ISSN 1999-
4893. doi: 10.3390/a15040105. URL https://www.mdpi.com/1999-4893/15/4/105.

[9] Camil Băncioiu and Lucian Vint,an. A comparison between two feature selection
algorithms. In Proceedings of ICSTCC 2017, pages 242–247, 2017.

[10] Camil Băncioiu, Maria Vint,an, and Lucian Vint,an. Efficiency optimizations for Koller
and Sahami’s feature selection algorithm. Romanian Journal of Information Science
and Technology, 22(1):85–99, 2019. ISSN 1453-8245. URL https://romjist.ro/
abstract-620.html.

[11] T. M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience,
Hoboken, N.J, 2nd ed edition, 2006. ISBN 978-0-471-24195-9.

[12] Robert G Cowell. Conditions under which conditional independence and scoring
methods lead to identical selection of bayesian network models. In Proceedings of the
Seventeenth conference on Uncertainty in artificial intelligence, pages 91–97, 2001.

103

https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/camilbancioiu/mbtk
https://github.com/camilbancioiu/mbtk
https://www.mdpi.com/1099-4300/23/11/1501
https://www.mdpi.com/1999-4893/15/4/105
https://romjist.ro/abstract-620.html
https://romjist.ro/abstract-620.html


[13] Shunkai Fu and Michel C Desmarais. Fast Markov blanket discovery algorithm
via local learning within single pass. In Conference of the Canadian Society for
Computational Studies of Intelligence, pages 96–107. Springer, 2008.

[14] Shunkai Fu and Michel C Desmarais. Markov blanket based feature selection: a
review of past decade. In Proceedings of the world congress on engineering, volume 1,
pages 321–328. Newswood Ltd, 2010.

[15] Shunkai Fu, Michel Desmarais, and Weibin Chen. Reliability analysis of Markov blan-
ket learning algorithms (1996-2010). In Proceedings of the International Conference
on Data Mining (DMIN), page 1. The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing (WorldComp),
2011.

[16] Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. Kernel dimension reduction
in regression. The Annals of Statistics, 37(4):1871–1905, 2009. ISSN 00905364,
21688966. URL http://www.jstor.org/stable/30243690.

[17] Tian Gao and Qiang Ji. Efficient score-based markov blanket discovery. Interna-
tional Journal of Approximate Reasoning, 80:277–293, 2017. ISSN 0888-613X. doi:
https://doi.org/10.1016/j.ijar.2016.09.009. URL https://www.sciencedirect.com/
science/article/pii/S0888613X1630161X.

[18] Ben Glocker, Mirco Musolesi, Jonathan Richens, and Caroline Uhler. Causality in
digital medicine. Nature Communications, 12, 2021. doi: https://doi.org/10.1038/
s41467-021-25743-9.

[19] Isabelle Guyon, editor. Feature extraction: foundations and applications. Number v.
207 in Studies in fuzziness and soft computing. Springer-Verlag, Berlin ; New York,
2006. ISBN 978-3-540-35487-1. OCLC: ocm70886217.

[20] Mark Andrew Hall. Correlation-based feature selection for machine learning. PhD
thesis, University of Waikato, 1999.

[21] David Heckerman, Dan Geiger, and David M. Chickering. Learning bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 1995. doi:
10.1007/BF00994016.

[22] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, MA, USA, 2009.

[23] Daphne Koller and Mehran Sahami. Toward optimal feature selection. In In 13th
International Conference on Machine Learning, pages 284–292, 1995.

[24] Paul Komarek and Andrew W. Moore. A dynamic adaptation of AD-trees for efficient
machine learning on large data sets. In Proceedings of the Seventeenth International
Conference on Machine Learning, ICML ’00, page 495–502, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

[25] Thuc Duy Le, Tao Hoang, Jiuyong Li, Lin Liu, Huawen Liu, and Shu Hu. A fast pc
algorithm for high dimensional causal discovery with multi-core pcs. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 16(5):1483–1495, 2019.
doi: 10.1109/TCBB.2016.2591526.

104

http://www.jstor.org/stable/30243690
https://www.sciencedirect.com/science/article/pii/S0888613X1630161X
https://www.sciencedirect.com/science/article/pii/S0888613X1630161X


[26] Changki Lee and Gary Geunbae Lee. Information gain and divergence-based feature
selection for machine learning-based text categorization. Information Processing &
Management, 42(1):155–165, January 2006. ISSN 03064573. doi: 10.1016/j.ipm.2004.
08.006.

[27] E. L. Lehmann and Joseph P. Romano. Testing statistical hypotheses. Springer, third
edition, 2005. ISBN 0-387-98864-5.

[28] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. Journal of machine learning research, 5:
361–397, 2004. URL http://www.jmlr.org/papers/v5/lewis04a.html.

[29] Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local
neighborhoods. In Advances in neural information processing systems, pages 505–511,
2000.

[30] Andrew Moore and Mary S Lee. Cached sufficient statistics for efficient machine
learning with large datasets. Journal of artificial intelligence research, 8:67–91, 1998.

[31] Ionel Daniel Morariu. Contributions to Automatic Knowledge Extraction from Un-
structured Data. PhD thesis, "Lucian Blaga" University of Sibiu (supervisor: Prof. L.
Vint,an), 2007.

[32] Teppo Niinimäki and Pekka Parviainen. Local structure discovery in bayesian net-
works. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, pages 634–643, 2012.

[33] E Pasero, A Montuori, W Moniaci, and Giovanni Raimondo. An application of data
mining to PM10 level medium-term prediction. PhD thesis, International Environ-
mental Modelling and Software Society, 2008.

[34] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Kaufmann, San Francisco, Calif, rev. 2. print., 12. [dr.] edition, 2008. ISBN
978-1-55860-479-7.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[36] Jose M Pena, Roland Nilsson, Johan Björkegren, and Jesper Tegnér. Towards scalable
and data efficient learning of Markov boundaries. International Journal of Approximate
Reasoning, 45(2):211–232, 2007.

[37] Stuart J. Russell and Peter Norvig. Artificial intelligence: A Modern Approach.
Prentice Hall series in artificial intelligence. Prentice Hall, Upper Saddle River, 3rd
ed edition, 2010. ISBN 978-0-13-604259-4.

[38] Marco Scutari. Bayesian network constraint-based structure learning algorithms:
Parallel and optimized implementations in the bnlearn r package. Journal of Statistical
Software, 77, 03 2017. doi: 10.18637/jss.v077.i02.

[39] Marco Scutari. bnlearn - an r package for Bayesian network learning and inference,
2020. URL https://www.bnlearn.com/bnrepository/.

105

http://www.jmlr.org/papers/v5/lewis04a.html
https://www.bnlearn.com/bnrepository/


[40] Tomi Silander and Petri Myllymäki. A simple approach for finding the globally
optimal bayesian network structure. In Proceedings of the Twenty-Second Conference
on Uncertainty in Artificial Intelligence, UAI’06, page 445–452, Arlington, Virginia,
USA, 2006. AUAI Press. ISBN 0974903922.

[41] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT
press, 2000.

[42] Er Statnikov, Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis.
Causal explorer: A matlab library of algorithms for causal discovery and variable
selection for classification, 2009.

[43] Ioannis Tsamardinos, Constantin Aliferis, Alexander Statnikov, and Er Statnikov.
Algorithms for large scale Markov blanket discovery. In In The 16th International
FLAIRS Conference, St, pages 376–380. AAAI Press, 2003.

[44] Ioannis Tsamardinos, Constantin Aliferis, Alexander Statnikov, and Er Statnikov.
Algorithms for large scale Markov blanket discovery. In In The 16th International
FLAIRS Conference, St, pages 376–380. AAAI Press, 2003.

[45] Ioannis Tsamardinos, Constantin F Aliferis, and Alexander Statnikov. Time and
sample efficient discovery of Markov blankets and direct causal relations. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 673–678. ACM, 2003.

[46] Hal R. Varian. Causal inference in economics and marketing. Proceedings of the Na-
tional Academy of Sciences, 113(27):7310–7315, 2016. doi: 10.1073/pnas.1510479113.
URL https://www.pnas.org/doi/abs/10.1073/pnas.1510479113.

[47] Xingyu Wu, Bingbing Jiang, Yan Zhong, and Huanhuan Chen. Tolerant markov bound-
ary discovery for feature selection. In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management, CIKM ’20, page 2261–2264, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450368599.
doi: 10.1145/3340531.3415927. URL https://doi.org/10.1145/3340531.3415927.

[48] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. In ICML, volume 97, pages 412–420, 1997.

106

https://www.pnas.org/doi/abs/10.1073/pnas.1510479113
https://doi.org/10.1145/3340531.3415927

