UNIVERSITATEA
_ L LUCIAN BLAGA
@ —DIN SIBIU—

Scoala doctorala interdisciplinara
Domeniul de doctorat: Calculatoare si Tehnologia Informatiei

TEZA DE DOCTORAT

3D Analysis of the Normal and Pathological
Coronary Morphology

Analiza 3D a morfologiei coronariene
normale si patologice

doctorand:

Alexandru DOROBANTIU

Conducator Doctorat:

Prof. Dr. Ing. Remus BRAD

e SIBIU 2021 s

B ABSTRACT e

This thesis is focused on automated coronary centerline extraction from Cardiac
Computed Tomography Angiography (CCTA) data. This belongs to the domain of medical
image segmentation, which, at the time | chose the subject for my thesis, was a hot topic in the
imaging research community [1].

The work is divided into three chapters. Chapter 1 is focused on information extraction
from images and improving general image compression. With increased usage of image
acquisition devices, including cameras and medical imaging instruments, the amount of
information ready for long term storage is also growing. In this chapter we give a detailed
description of the state-of-the-art lossless compression software PAQ8PX applied to grayscale
image compression. We propose a new online learning algorithm for predicting the probability
of bits from a stream. We then proceed to integrate the algorithm into PAQ8PX’s image model.
To verify the improvements, we test the new software on three public benchmarks.
Experimental results show better scores on all of the test sets.

Edge detection plays an important role in many computer vision systems. Therefore, in
Chapter 2, we propose a novel application agnostic algorithm for prediction of probabilities
based on the contextual information available and then apply the algorithm for estimating the
probability of pixels belonging to an edge using surrounding pixel values as local contexts. We
then proceed to test different image transformations as input layers, such as the Canny edge
detector. We propose two different architectures, one single layered and one multilayered,
which approach the scaling problem by creating scaled side outputs and combining them via a
logistic regression layer. We tested our approach on the BSDS500 edge detection dataset with
optimistic results.

In Chapter 3, the focus is turned to medical image segmentation, where the mesh-type
coronary model, obtained from three-dimensional reconstruction using the sequence of images
produced by computed tomography (CT) can be used to obtain useful diagnostic information,
such as extracting the projection of the lumen (planar development along an artery). We propose
an automated coronary centerline extraction from cardiac computed tomography angiography
proposing a 3D version of U-Net architecture, trained with a novel loss function and with
augmented patches. We have obtained promising results in terms of accuracy (between 90—
95%) and overlap (between 90-94%) with various network training configurations on the data
from the Rotterdam Coronary Artery Centerline Extraction benchmark. We have also
demonstrated the ability of the proposed network to learn despite the huge class imbalance and
sparse annotation present in the training data.

Chapter 1

In this chapter we describe the state-of-the-art image compression method called
PAQ8PX and introduce a new algorithm for on-line automated learning. We tailored the
implementation for our proposed method by integrating it with PAQ8PX, which resulted in an
improved 8bpp grayscale model. We tested our implementation and obtained improvements on
four datasets belonging to three benchmarks. The research was published in [2].

PAQ is a series of experimental lossless data compression software aiming at the best
compression ratio at the cost of computing resources or keeping backwards version
compatibility. Compressing a file goes through 4 main stages: preprocessing, model prediction,
context mixing and probability refining. PAQ includes context modeling for many types of
data, including images. Contexts are defined using specific modeling which includes direct
modeling, indirect modeling, and last square modeling. The probability predictions from the

1

context models are blended using context mixing, which is a particular case of a Gated Linear
Network. The output of the blending is refined through a network of adaptive probability maps.

The proposed method for improving the probability predictor is inspired from ensemble
models, and the idea behind the algorithm is to encode probabilities in a memory-like structure.
For resilience to noise, not all the keys should find a match in the memory.

We choose a simple model for contexts for predicting each individual bits of the pixels.
We use rays in four directions with various lengths, and the quantized derivatives along the
rays. We obtain a value from the memory for each context. We average all the obtained memory
values then convert the average into a probability using the sigmoid function. For updating the
values in the memory, we use reinforcement learning. Since we don’t know the true value of
the probability that a bit is 0 or 1 in a given context, we cannot use supervised learning. We
back propagate the binary outcome in the network and try to minimize the cumulative logistic
loss in an on-line manner. The square loss can be also used, but we are trying to minimize the
wasted coding space. In order to pass mixing information to the weak learners, we propose a
dual objective minimization function: in respect to the output of the network — global error, and
in respect to the output of the individual nodes (side predictions) — local error. All the memory
values are then updated by subtracting their local and the global error. Instead of updating
weights of the mixture, we update directly the values which contribute to the average. We have
no layer to separate the context weights from the input probabilities, making the method
different from the context mixing algorithm.

The algorithm makes no assumption on how to organize the memory structure. We do not
restrict the access to the memory to a precise scheme, but suggest three approaches: simple
lookup, tagged lookup, and bucket lookup.

We implemented a tool for evaluating the pixelwise compression improvements on the
PAQB8PX prediction mechanism. The tool takes as input two maps coming from two different
predictor versions which are the coding cost for each bit of the input stream. The cost for each
group of consecutive 8 bits (or 24 bits for color images) can be mapped to a single value and
squashed into the 0-255 interval to create a pixelwise loss map for a predictor version. The
mapping function can be tuned to emphasize different aspects of the prediction, and thus help
estimate the potential gains should one change parameters of the model. The tool outputs other
useful pixelwise information, such as the number of times a predictor got better loss, and the
number of times a predictor got better loss on a given bit position in pixel.

In order to test the effectiveness of the algorithm, we applied the augmented version of
the PAQ8PX algorithm with Contextual Memory to four test sets. We present our results for all
the images in the datasets in order to prove that we did not tune the algorithm to a selected few.
The images are compressed separately (as in not a solid archive) to prevent reusing correlations.

The main contribution of this chapter is an application agnostic algorithm for predicting
probabilities based on the contextual information available with learning done in an on-line
manner. The usefulness of the algorithm is demonstrated by integrating it with the PAQ8PX
algorithm and testing it on several image compression benchmarks. The results show an overall
compression ratio improvement across all the datasets without having special crafted features.
One important difference from existing ensemble mixing algorithms is that, in our algorithm,
we assume that various contexts apply together and the prediction benefits from the synergy of
the side predictions, unlike the ensembles which assume model independence.

Chapter 2

In this chapter we generalize the algorithm for automated learning introduced in the
previous chapter, and which stands as a basis for various applications. We provide a description
of the algorithm and point out the differences between the tested implementations. To prove its
effectiveness, we applied and tested the algorithm on an edge detection benchmark. Up to this
time, the algorithm was applied only for 2D images. The research was published in [3].

Edge detection has been a subject of research for many years, with papers as early as 1975
[4]. Since then, a large number of techniques have been approached, targeting different aspects
of edge detection, like closed contours, human-like perception, or fast detection. The Berkeley
Computer Vision Group provides a public benchmark for contour detection and image
segmentation. Performance is evaluated by measuring the precision and recall, and combining
them via harmonic mean into an F1 score (F measure).

Context modeling describes how the context information is structured and maintained.
Depending on the problem, different types of discriminator contexts are useful. Local context
refers the aspect of the data examined, as opposed to context value, which represents the
numeric value of that context. The context value will be used for accessing the memory
structure. The memory takes a context value as input, and outputs a value used for computing
the output probability of belonging to a certain class.

When discussing edge detection and describing whether a pixel belongs to an edge or not,
one of the most important aspects to take into consideration are the neighboring pixels. We can
define contexts as rays, starting from the focused pixel and going in a straight line away in a
given direction. Rays are defined by direction and length.

We extend the prediction technique introduced in Chapter 1 with an adaptive probability
map to refine the result. The adaptive probability map (APM), also called secondary symbol
estimation (SSE), is used to fine tune a probability, and works in the following way: select a set
of interpolation points according to a context value, find the two points indexes between which
the input value falls, then output the probability as the weighted average of the two values from
the points, where the weight is selected from how far the input is from the two points.

For the case of edge detection, we can use both reinforcement learning, using the ground
truth as the value zero or one, and supervised learning, using the probability of the pixel to be
selected as part of the ground truth in one user submission. The global error is computed using
the output probability which was refined by the adaptive probability map. This is not
mandatory, but our tests show better results when the refined probability is used. This can be
seen as allowing the model to learn something that can be corrected.

As an optimization for all three memory types, if the APM is designed to stretch the
probability first before quantizing, the two steps that squash (after averaging) and then stretch
again (before quantizing) cancel each other out, which means that the two operations, which
are quite computational costly, can be skipped, as well as the value forwarded for quantization.
The training phase of the memory leads to data dependencies between successive runs. The
dependencies come from accessing the same memory locations, and also from accessing the
adaptive probability map. However, there is room for improvement. For instance, computing
the context values for accessing the memory locations is fully parallelizable. Depending on the
memory type used, the memory locations can also be computed in parallel. In the testing phase,
no read after write dependencies exist anymore, so the whole process can be run in parallel.

We implemented the contextual memory algorithm for an edge detector application.
When analyzing about two dimensional images, color images have more layers in the dimension
of the RGB colors. Hence three layers can go as an input for the algorithm. These layers are
preprocessed using a chain of preprocessors. We used a Gauss filter for eliminating the noise
in the input images. This takes the original RGB layers as input and outputs a three-layer image.
We used a filter of size 5 and a sigma value of 1.4.

Since the algorithm makes no assumption of the data behind contexts, it can be benefic
to include transformations of the color layers. Such transformations are appended, in the same
way as the other layers, to the algorithm’s input. We optionally used the Sobel filter, the Canny
edge detection algorithm and a Kirsch edge detection algorithm as input, all of which use the
color channels and output another layer. This makes the final input image have three or more
layers. Having a Canny layer, or any edge detector as input is a sort of domain specific
knowledge added in the model.

The single layer architecture takes a preprocessed image as an input and uses a given set
of color channels to compute an output image which consists of a single layer grayscale image

3

in which the pixels represent the probability that the position in the original image belongs to
an edge. The single layer architecture combined with the simple rays as contexts does not take
into account information about the edge being kept the same at different zoom levels. To tackle
the zooming problem, the multilayer architecture behaves in this way: take the original image,
apply preprocessing, obtain the output; then take the original image, apply the preprocessing,
append the previously obtained output as a layer, resize the image (meaning all its layers) and
use it as an input for the algorithm. If one decides to separate the memory used by the algorithm
at different sizes, we have a multilayer architecture. Each layer is trained separately starting
from the largest image and going towards resized images. An algorithm layer can have different
configuration from the other layers, with various options that include the length of the longest
ray, the preprocessing done, the memory size and others. The result of the multilayer
architecture is a set of grayscale images of varying sizes, which are called side outputs. These
side outputs are then combined (blended) using a logistic regression layer, to form a single
image. Before blending, the images are scaled to have the same size. The weights of the logistic
regression layer are also trained on the training set.

Before computing the score for the benchmark, the output images are subjected to a non-
maximal suppression technique and subsequently to an edge thinning. The benchmark provides
a tool for evaluation which has an automated search in the space of thresholding, so that the
user feels free to leave grayscale images instead of making the binarization himself.

Experimental results show that the learning is shifted towards not taking any risks, since
the better F1 Score is achieved in the low threshold settings. In order to obtain an overall better
F1 Score, class balancing must be considered when applying the loss function.

We made another analytical comparison using the Cross-Entropy measure. If we have
two probability distributions, we can measure the number of bits needed to identify an event
drawn from a set if a coding scheme is used using a probability distribution other than the true
distribution of the set. Since the pixel intensities in the resulting images can be modeled as a
probability of a pixel belonging to an edge, we can measure the cross entropy for the output
images. We show a comparison with the Canny algorithm for the first 50 images in the test set
of the benchmark.

The main contribution of this chapter is an off-line application agnostic algorithm for the
prediction of probability that a pixel belongs to a class or another, based on the contextual
information available, where learning can be done in a single pass over the training data. More
than this, it does not impose any constraints on how to choose or model the context. It also
allows it to be part of larger learning and prediction structures, having loose requirements on
what information is needed for feedback.

Chapter 3

In this chapter we present a machine learning algorithm for vessel centerline extraction
which uses a proposed 3D adaptation of the U-NET architecture which outputs the probability
for each voxel of a full volume to be part of the centerline. Also, based on an extensive state of
the art review, an adapted loss function was proposed to handle sparse annotation, meaning that
not all the centerlines are part of the ground truth of the dataset, and class imbalance, as very few
voxels from an entire volume belong to a centerline. The research was published in [1] and [5].

Vessel centerlines can be extracted by either a segmentation and thinning pipeline, or by
direct tracking. The extracted centerlines can serve as input for tracking algorithms for
segmenting the required vessel tree.

The idea for creating a 3D U-Net network was based on the observation of the results of
U-Net Convolutional Networks for Biomedical Image Segmentation [6], which allows a fully
convolutional neural network to provide a good segmentation even when trained with a small
training dataset.

The design of the U-Net follows two important steps, similar to an autoencoder network.
The first one is the contraction, where successive rounds of two convolutions and a max-pooling
to reduce the output size by half are applied on the input. For each round, the number of filters
for the convolution is doubled. The bottom layer will have the most feature maps, but will also
be the smallest in size. Its purpose is to learn an encoded representation of what it needs to be
segmented. The convolution with 3x3x3 kernels means that one pixel from all the borders will
be lost. To alleviate this problem, padding was employed. The second one is the expansion.
Starting from the bottom layer, successive rounds of up-sampling, concatenate, and two
convolutions (also with padding) are applied. The up-sampling resizes the feature vector.
Together with the information concatenated from the same-size input of the contraction, the
two convolutions can reconstruct the image in its original size. After the last expansion, another
convolution is applied with the number of kernels equal to the number of features to extract.
Since centerline extraction aims for binary segmentation, only one last kernel with a sigmoid
activation function was required. The loss function is chosen such that the segmentation
behaves like a voxel-wise classification function.

The limited amount of the memory of the GPU renders impossible the feeding an entire
CT volume to a neural network. In 2D images, memory size is not a problem, even when
working with large batches. Our first approach was to resize the volumes (and the ground truth)
to a volume which would be small enough to fit in the video RAM, however the loss in precision
when upscaling made the output useless for segmenting thin centerlines. Training the model
using resizing posed problems with the dataset being too small. The second approach was
proposed to divide the input into smaller patches, cutting only small parts of the volume (and
the ground truth) and feeding them to the network. This method does not have any of the
downsides of the previous one, but introduces a different one: the lack of context. Therefore, a
tradeoff is reached between increasing the patch size so that the available contextual
information for the model is enough to make a good prediction, and the size of the model so
that the model is large enough to capture the correlations about where the centerline is
positioned and that it is continuous and also crosses the patches. To generate the full output, the
solution employed was to split the input in blocks of the shape of the patch, pass each of the
blocks through the model, and recombine the predictions into a full 3D volume again.

For gradually adjusting weights during the training, a loss function is required, and should
be chosen to quantify how much and in what direction to adjust the parameters so that, on the
next iteration, the outputs are closer to the objective. None of the numerous loss functions
proposed in literature fit the specifics of our dataset. A function to work with sparsely annotated
centerlines is needed, meaning that examples would be contradictory, and, at the same time,
with a huge class imbalance. We introduce a loss function which is a combination between the
focal loss and an overlap loss, thus combining a local loss function with a global one.

To test the implementation of the proposed neural network, we use the dataset from the
Rotterdam Coronary Artery Algorithm Evaluation Framework [7]. This is a public benchmark
to evaluate algorithms for the task of Centerline Extraction from CTA data. The dataset is split
in a training set and a testing set. The training set consists of 8 volumetric images and the test
set consists of 24 volumetric images. All the images have four target vessel descriptions with
each containing four reference points. The training set images additionally contain the ground
truth in the form of a reference file for the target vessels. This makes it challenging for
supervised learning algorithms, since many of the vessels are not reported as part of the ground
truth. The 8 input volumes with ground truth were split into a training set of seven and a
validation set with the remaining volume, leaving one volume out, therefore the holdout
validation was employed. While the number is small, using augmented patches helps reduce
the problem of a really small dataset.

The models were trained and tested on an NVIDIA GeForce GTX 1060 with 6GB
VRAM. Training required around 8 hours on the formerly mentioned video card. The predicting
processing time for a patch size input varies between 400ms and 600ms, depending on the patch
size and model size. For a full volume, this time is multiplied by the number of patches inside

5

a volume. At around 80 patches and 500ms per patch, the full output is computed in around 40
seconds. Stitching and post-processing for saving is negligible in time. The training time makes
hyperparameter tuning a strenuous operation, and better configurations can be achieved by
integrating the algorithm into automated design space exploration frameworks. The parameter
search space must be more rigidly defined, and the proposed parameters here are a good start.

Following the format of the reference file, we have created a tool to generate a volumetric
mask for each input image of the training set, which serves as the ground truth in the supervised
learning algorithm. The tool can be parametrized to specify the width in voxels of the centerline.

The training of the proposed architecture was performed with different configurations for
the following parameters: input patch size, layer reduction, batch size, feeding or not the
network patches with no single voxel of ground truth. The hard constraint put on the parameters
is given by the limited amount of VRAM of the video card. An example constraint: if the input
path size was increased, the batch size or the number of convolutional kernels in the layers
needs to be reduced.

The Batchgenerators framework [8] was used because it provided a wide range of
transforms and included spatial augmentation, suitable for the 3D input data. The patches were
augmented with spatial transformations, color transformations, noise transformations. Only the
spatial transformations are applied, with the same parameters, to the ground truth. Without
augmentations, the dataset was too small for the training to converge.

The classical notation of epoch, where epoch means one pass over the entire training
dataset, will no longer apply when working with randomly cut patches. The term epoch is
defined here by multiplying the number of volumes in the training set with the largest input
volume size divided on each axis with the corresponding patch size, with the result divided by
the batch size. The results are reported for different epochs given various input patch sizes. For
the training dataset, the values for one epoch are computed as the average across all the input
patches. For the validation dataset, the values for one epoch are computed by assembling the
whole volume from the output patches and comparing it with the whole ground truth. The
results are presented in the form of a pair of binary accuracy and overlap. Visual validation for
the output volumes is provided.

The main contribution of this chapter is an implementation of a 3D U-Net, suitable for
segmenting the coronary artery centerline. We have built upon a 2D U-Net base implementation
network, originally designed for retina vessel segmentation, and developed a 3D version
capable of segmenting with voxel precision. We conceived a novel loss function designed to
combat two simultaneous problems, usually related to volumetric medical segmentation: huge
class imbalance and sparse annotation. Without this loss function, the convergence of the model
was not guaranteed even when using augmented inputs. We have demonstrated the training
convergence using a second loss function starting with a network pretrained with another loss
function. Without the pretraining, the training using directly the second loss function would not
converge.

s REZUMAT . g

Focusul acestei teze este procesul de segmentare automata a liniei centrale coronariene
din angiografia tomografiei computerizate cardiace (CCTA). Aceasta apartine domeniului
imagisticii medicale, care, la momentul in care am ales tema, era un subiect important in
comunitatea stiintifica de imagistica medicala [1].

Lucrarea este impartita in trei capitole. Capitolul 1 este axat pe extragerea informatiilor
din imagini si imbunatatirea compresiei de date a imaginilor. Odata cu cresterea numarului de
dispozitive de achizitie a imaginilor, inclusiv a camerelor si a instrumentelor de imagistica
medical, creste si cantitatea de informatii necesara pentru stocarea pe termen lung. Tn acest
capitol oferim o descriere detaliatd a software-ului de compresie fara pierderi de ultima
generatie PAQSPX, cu aplicare pe compresia imaginilor in tonuri de gri. Propunem un nou
algoritm de invatare continua pentru prezicerea probabilitatii bitilor dintr-un flux de date. Apoi,
descriem integrarea algoritmului in modelul de imagine al PAQ8PX. Pentru a demonstra
imbunatatirile, testam noul software pe trei benchmark-uri publice. Rezultatele experimentale
aratd scoruri mai bune pentru toate seturile de date.

Detectarea muchiilor obiectelor dintr-o imagine are un rol important in multe sisteme de
viziune computerizata. Prin urmare, in capitolul 2, propunem un nou algoritm independent de
domeniu pentru predictia probabilitatilor, care este bazat pe informatiile contextuale
disponibile, si apoi aplicam algoritmul pentru estimarea probabilitatii pixelilor de a apartine
unei margini. Sunt folosite valorile pixelilor inconjuratori ca si contexte locale. Urmatorul pas
descris este testarea diferitelor transformari de imagine ca si straturi de intrare, cum ar fi
detectorul de contur Canny. Propunem doua arhitecturi diferite, una cu un singur strat si una
multistrat, care abordeaza problema scalarii prin crearea de rezultate secundare redimensionate,
si apoi combinarea acestora printr-un strat de regresie logistica. Am testat abordarea noastra pe
setul de date BSDS500 de detectare a contururilor cu rezultate optimiste.

Tn capitolul 3, accentul este pus pe segmentarea de imagini medicale, unde modelul
coronarian de tip mesh, obtinut din reconstructia tridimensionala folosind secventa de imagini
produse prin tomografie computerizata (CT) poate fi folosit mai departe pentru a obtine
informatii utile de diagnostic, cum ar fi extragerea proiectiei lumenului (dezvoltare plana de-a
lungul unei artere). Propunem o extractie automata a liniei centrale coronariene din angiografia
tomografiei computerizate cardiace, prin crearea unei versiuni 3D a arhitecturii U-Net,
antrenatd cu o functie de pierdere noua si cu patch-uri augmentate. Am obtinut rezultate
promitatoare in ceea ce priveste acuratetea (intre 90-95%) si suprapunerea (intre 90-94%) cu
diferite configuratii de antrenament ale retelei pe datele din benchmark-ul Rotterdam de
extragere a liniei centrale a arterelor coronariene. De asemenea, am demonstrat capacitatea
retelei propuse de a invata, in ciuda debalansarii imense intre cele doua clase si a adnotarii rare
prezente in datele de antrenament.

Capitolul 1

Tn acest capitol descriem metoda de compresie de imagini de ultima generatie numita
PAQS8PX, si introducem un nou algoritm pentru invatarea automatd continua. Am adaptat
implementarea metodei propuse, integrand-o cu PAQ8PX, ceea ce a dus la un model mai bun
de predictie pentru imagini in tonuri de gri. Am testat implementarea si am obtinut imbunatatiri
pentru patru seturi de date din trei benchmark-uri diferite. Cercetarea a fost publicata in [2].

PAQ este o serie de programe experimentale de compresie fara pierderi a datelor, care
vizeaza cel mai bun raport de compresie in defavoarea dimensiunii resurselor de calcul si fara

pastrarea compatibilitatii cu versiunile mai vechi. Comprimarea unui fisier trece prin 4 etape

7

principale: preprocesare, predictia modelului, combinarea contextuald, si rafinarea
probabilitatilor. PAQ include modelarea contextului pentru multe tipuri de date, inclusiv
imagini. Contextele sunt definite folosind modelare specifica, care include modelarea directa,
modelarea indirecta si modelarea regresiei liniare. Predictiile de probabilitate din modelele
contextuale sunt convertite intr-o singura predictie folosind combinarea contextuala, care este
un caz particular al unei retele neuronale de tipul Gated Linear Network. Rezultatul combinarii
este apoi rafinat printr-o retea de functii de transfer adaptive.

Metoda propusa pentru imbunatatireca metodei de predictie a probabilitatii este inspirata
din Ensemble learning, iar ideea din spatele algoritmului este de a codifica probabilitatile intr-
o structura asemanatoare unei memorii. Pentru toleranta la zgomot, nu toate intrarile ar trebui
sa gaseasca o potrivire In memorie.

Tn scopul modelarii contextelor pentru prezicerea fiecirui bit individual al pixelilor,
alegem o metoda simpla: folosim raze in patru directii cu diferite lungimi si derivatele
cuantizate de-a lungul acestora. Obtinem o valoare din memorie pentru fiecare context. Facem
apoi media tuturor valorilor obtinute, apoi convertim media intr-o probabilitate folosind functia
sigmoida. Pentru actualizarea valorilor din memorie, folosim reinforcement learning. Deoarece
nu cunoastem adevarata valoare a probabilitatii ca un bit sa fie 0 sau 1 intr-un context dat, nu
putem folosi invatarea supervizata (supervised learning). Propagam inapoi rezultatul binar prin
retea si incercam sa minimizam pierderea logisticd cumulativa intr-o maniera continua.
Pierderea patratica poate fi, de asemenea, utilizatd, dar incercam sda minimizam spatiul de
codare irosit. Pentru a transmite informatiile de combinare nodurilor ansamblului, propunem o
functie dubla de minimizare a obiectivului: in ceea ce priveste iesirea retelei - eroarea globala,
si in ceea ce priveste iesirea nodurilor individuale (predictii reziduale) - eroarea locala. Toate
valorile corespunzatoare din memorie sunt apoi actualizate prin scaderea erorii lor locale si
globale. n loc sa actualizim ponderile combinarii, actualizim direct valorile care contribuie la
medie. Nu avem niciun strat aditional care sa separe ponderile de context de probabilitatile de
intrare, facand diferita metoda propusa de algoritmul de combinare contextuala.

Algoritmul nu face nici o presupunere asupra unui mod de a structura memoria. Nu
restrictiondm accesul la memorie la o schema precisa, ci sugerdm trei abordari: cautare simpla,
cautare etichetata si cautare locala.

Am implementat un program pentru evaluarea imbunatatirilor de compresie a datelor
pentru pixeli individuali pe mecanismul de predictie PAQ8PX. Programul primeste ca intrare
doud matrici provenind din doua versiuni diferite de predictor, matrici care reprezinta costul de
codare pentru fiecare bit al fluxului de intrare. Costul pentru fiecare grup de 8 biti consecutivi
(sau 24 de biti pentru imaginile color) poate fi convertit la o singurd valoare si limitat la
intervalul 0-255 pentru a crea o matrice de pierdere la nivel de pixel pentru o versiune a
predictorului. Functia de conversie poate fi ajustata pentru a sublinia diferitele aspecte ale
predictiei si, astfel, ajuta la estimarea castigurilor potentiale in cazul in care se schimba
parametrii modelului. Programul furnizeaza si alte informatii utile, cum ar fi de cate ori un
predictor a avut o pierdere mai buna si de cate ori un predictor a avut o pierdere mai buna pe o
anumita pozitie a bitului in pixel.

Pentru a testa eficienta algoritmului, am aplicat versiunea extinsa a algoritmului PAQ8PX
Cu memoria contextuald pe patru seturi de test. Prezentam rezultatele pentru toate imaginile din
seturile de date pentru a demonstra ca nu am ajustat algoritmul doar la cateva imagini selectate.
Imaginile sunt comprimate individual (nu intr-o arhiva solida) pentru a preveni reutilizarea
corelatiilor.

Contributia principald a acestui capitol este un algoritm agnostic de aplicatie pentru
prezicerea probabilitatilor pe baza informatiilor contextuale disponibile, cu invatarea realizata
intr-o maniera continua. Utilitatea algoritmului este demonstrata prin integrarea acestuia cu
algoritmul PAQS8PX si testarea acestuia pe mai multe benchmark-uri de compresie de imaginii.
Rezultatele arata o Tmbunatatire generala a raportului de compresie pentru toate seturile de date
fara a avea caracteristici particularizate datelor. O diferenta importantd fata de algoritmii

8

existenti de Ensemble learning este ca, in algoritmul nostru, presupunem ca diferite contexte se
aplica impreuna si predictia finala beneficiaza de sinergia predictiilor reziduale, spre deosebire
de ansamblurile care pleaca de la ipoteza independentei constituentilor.

Capitolul 2

Tn acest capitol generalizam algoritmul pentru invitarea automata descris n capitolul
anterior, care sta la baza pentru diferite aplicatii. Oferim o descriere a algoritmului si subliniem
diferentele implementarilor testate. Pentru a dovedi eficacitatea, am aplicat si testat algoritmul
pe un benchmark de detectare a conturului obiectelor din imagini. Pana in prezent, algoritmul
a fost aplicat doar pentru imagini 2D. Cercetarea a fost publicata in [3].

Detectarea conturului imaginilor a fost subiect de cercetare de mai multi ani, cu lucrari
publicate inca din 1975 [4]. De atunci, un numar mare de tehnici au fost abordate, vizand diferite
aspecte ale detectarii marginilor obiectelor, cum ar fi contururile nchise, perceptia
asemanatoare cu a omului, sau detectarea rapida. Berkeley Computer Vision Group ofera un
benchmark public pentru detectarea conturului si segmentarea imaginilor. Performanta este
evaluata prin masurarea preciziei si a recall-ului si combinarea acestora prin media armonica
intr-un scor F1 (masura F).

Modelarea contextuala descrie modul in care informatiile de context sunt structurate si
mentinute. In functie de problema, sunt utile diferite tipuri de contexte discriminatoare.
Contextul local se refera la aspectul datelor examinate, spre deosebire de valoarea contextului,
care reprezintd valoarea numerica a acelui context. Valoarea contextului va fi utilizata pentru
accesarea structurii memoriei. Memoria ia 0 valoare de context ca intrare si scoate o valoare
utilizata pentru calcularea probabilitatii de iesire a apartenentei la o anumita clasa.

Atunci cand se discuta despre detectarea conturului si se descrie daca un pixel apartine
sau nu unei margini, unul din cele mai importante aspecte care trebuie luate in considerare este
cel al pixelilor vecini. Putem defini contexte ca raze, pornind de la pixelul focalizat si mergand
in linie dreapta intr-o directie datd. Razele sunt definite prin directie si lungime.

Extindem tehnica de predictie introdusa in capitolul 1 cu o functie de transfer adaptiva
pentru a rafina rezultatul. Functia de transfer adaptiva, numitd si estimarea secundara a
simbolului, este utilizata pentru a ajusta fin o probabilitate si functioneaza in felul urmator: se
selecteaza un set de puncte de interpolare in functie de o valoare contextuald, se gasesc cele
doua puncte index intre care cade valoarea de intrare, apoi se emite probabilitatea ca medie
ponderata a celor doua valori ale celor doua puncte, unde ponderea este selectata de distanta
valorii de intrare fata de cele doud puncte.

Pentru cazul detectarii muchiilor, putem utiliza atdt Reinforcement Learning, folosind
clasa adevarata ca valoare de zero sau unu, cat si invatarea supervizata, folosind probabilitatea
ca pixelul sa fie selectat ca parte a clasei adevarate dintr-o marcare a unui utilizator din mai
multi posibili. Eroarea globala este calculatd folosind probabilitatea finald care a fost rafinata
de functia de transfer adaptiva. Acest lucru nu este obligatoriu, dar testele noastre arata rezultate
mai bune atunci cand este utilizatd probabilitatea rafinata. Acest lucru poate fi vazut ca
permiterea modelului sa invete ceva care poate fi corectat.

Ca o optimizare pentru toate cele trei tipuri de memorie, daca functia de transfer adaptiva
este proiectata sa extinda spatiul probabilitatii Tnainte de cuantizare, cei doi pasi care restrang
spatiul (dupa aplicarea mediei) si apoi care il extind (inainte de cuantizare) se anuleaza reciproc,
ceea ce inseamna ca cele doua operatii care sunt destul de costisitoare computational pot fi
omise, iar valoarea de intrare este cuantizata direct. Faza de antrenament a memoriei duce la
dependente de date intre rulari succesive. Dependentele provin din accesarea acelorasi locatii
de memorie si, de asemenea, din accesarea functiei de transfer. Cu toate acestea, exista loc de
imbunitatire. De exemplu, calculul valorilor contextelor poate fi complet paralelizat. in functie
de tipul de memorie utilizat, locatiile din memorie pot fi, de asemenea, calculate in paralel. Tn
faza de testare, nu mai exista dependente de citire dupa scriere, astfel incat intregul proces poate
fi rulat in paralel.

Am aplicat algoritmul de memorie contextuala pentru un program detector de contur.
Cand se analizeaza imagini bidimensionale, imaginile color au mai multe straturi descrise de
spatiul culorilor RGB. Prin urmare, trei straturi sunt intrare pentru algoritm. Aceste straturi sunt
preprocesate folosind un lant de preprocesoare. Am folosit un filtru Gauss pentru eliminarea
zgomotului din imaginile de intrare. Aceasta ia straturile RGB originale ca intrare si produce o
imagine cu trei straturi. Am folosit un filtru de dimensiune 5 si o valoare sigma de 1,4.

Deoarece algoritmul nu face nicio presupunere a datelor din spatele contextelor, poate fi
benefic sa includem transformari ale straturilor de culoare. Rezultatul acestor transformari
devine, la fel ca si celelalte straturi, intrare a algoritmului. Am folosit filtrul Sobel, algoritmul
de detectare a muchiilor Canny, si un algoritm de detectare a muchiilor Kirsch ca si intrare,
algoritmi care folosesc canale de culoare si produc un alt strat. Acest lucru face ca imaginea de
intrare finala sa aiba trei sau mai multe straturi. Avand un strat Canny sau orice detector de
contur ca intrare este echivalent cu adaugarea ih model de cunostinte specifice domeniului.

Arhitectura cu un singur strat ia o imagine preprocesata ca intrare si foloseste un set dat
de canale de culoare pentru a calcula o imagine de iesire care consta dintr-o singura imagine in
tonuri de gri 1n care pixelii reprezinta probabilitatea ca pozitia din imaginea originala sa apartina
unui contur. Arhitectura cu un singur strat combinata cu razele simple ca si contexte nu ia n
considerare informatiile despre conturul pastrat la fel la diferite niveluri de scalare. Pentru a
rezolva problema scalarii, arhitectura multistrat se comporta in acest fel: se ia imaginea
originald, se aplicd procesarea, se obtine o iesire; apoi Se ia imaginea originald, se
redimensioneaza, se aplica procesarea, se adauga rezultatul obtinut anterior ca strat, si Se
foloseste ca intrare pentru algoritm. Daca se decide separarea memoriei utilizate de algoritm la
diferite nivele de redimensionare, avem o arhitectura multistrat. Fiecare strat este antrenat
separat incepand de la cea mai mare imagine si mergand spre imagini de dimensiune mica. Un
strat al algoritmului poate avea o configuratie diferita de celelalte straturi, cu diverse optiuni
care includ lungimea celei mai lungi raze, preprocesarea efectuatd, dimensiunea memoriei si
altele. Rezultatul arhitecturii multistrat este un set de imagini Tn tonuri de gri de diferite
dimensiuni, care se numesc iesiri reziduale. Aceste iesiri reziduale sunt apoi combinate
(amestecate) folosind un strat de regresie logistica pentru a forma o singura imagine. Inainte de
combinare, imaginile sunt redimensionate pentru a avea toate aceeasi dimensiune. Ponderile
stratului de regresie logistica sunt de asemenea calculate folosind acelasi set de antrenament.

Tnainte de a calcula scorul pentru benchmark, imaginile iesire sunt supuse unei tehnici de
suprimare non-maxime si, ulterior, unei subtieri de margine. Benchmark-ul ofera un instrument
de evaluare care are o cautare automata in spatiul pragului de binarizare, astfel incat utilizatorul
sa poatd lasa imagini in tonuri de gri in loc sa faca el insusi binarizarea.

Rezultatele experimentale arata cd invatarea este orientatd spre a nu-si asuma niciun risc,
deoarece scorul F1 mai bun este atins in setarile de prag de binarizare scazut. Pentru a obtine
un scor F1 mai bun, trebuie luata in considerare echilibrarea procentului de exemple apartinand
unei clase atunci cand se aplica functia de pierdere.

Prezentam incd o comparatie analiticd folosind masura Cross-Entropy. Daca avem doua
distributii de probabilitate, putem masura numarul de biti necesari pentru a identifica un
eveniment extras dintr-o multime daca o schema de codificare este utilizata cu o distributie de
probabilitate diferita de distributia adevaratd a multimii. Deoarece intensitatile pixelilor din
imaginile rezultate pot fi modelate ca probabilitate ca un pixel sd apartind unei margini, putem
masura entropia incrucisata pentru imaginile de iesire. Aratdm o comparatie cu algoritmul
Canny pentru primele 50 de imagini din setul de testare al benchmark-ului.

Contributia principald a acestui capitol este un algoritm agnostic de aplicatie pentru
predictia probabilitatii ca un pixel apartine unei clase sau alteia, predictie facuta pe baza
informatiilor contextuale disponibile, unde invatarea se poate face intr-o singura trecere peste
datele de antrenament. Mai mult decét atat, nu se impune nicio constrangere asupra modului de
alegere sau modelare a contextului. De asemenea, este posibila integrarea algoritmului in

10

structuri mai mari de invatare si predictie, avand cerinte scazute referitoare la informatiile
necesare pentru antrenament.

Capitolul 3

Tn acest capitol este propus un algoritm de invitare automata pentru extragerea liniei
centrale a vaselor de sdnge coronariene, care utilizeaza o adaptare 3D a arhitecturii U-NET care
genereaza probabilitatea ca fiecare voxel (volume pixel) al unui volum complet sa fie parte a
liniei centrale a unui vas de sange. De asemenea, pe baza unei revizuiri extinse a literaturii
actuale, a fost propusa o functie de pierdere adaptata pentru a gestiona adnotarile rare, ceea ce
inseamna ca nu toate liniile centrale sunt marcate in setul de date, si al dezechilibrului de clasa,
deoarece foarte putini voxeli dintr-un Intreg volum apartin unei linii centrale. Cercetarea a fost
publicata in [1] si [5].

Liniile centrale ale unui vas de sange pot fi extrase fie printr-o segmentare si apoi un
algoritm de subtiere, fie prin urmarire directa. Liniile centrale extrase pot servi drept intrare
pentru algoritmii de urmarire pentru segmentarea intregului arbore coronarian.

Ideea pentru crearea unei retele 3D U-Net a fost construita pe observarea rezultatelor
retelelor U-Net convolutionale pentru segmentarea imaginilor biomedicale [6], care permite
unei retele neuronale complet convolutionale sa ofere o bund segmentare chiar si atunci cand
este antrenata cu un mic set de date pentru antrenament.

Structura retelei de acest tip urmeaza doi pasi importanti, similari cu o retea de tipul
Autoencoder. Primul pas este contractia, unde sunt aplicate pe datele de intrare runde
consecutive de doua convolutii si apoi o operatic max pooling pentru a reduce dimensiunea
iesirii. Pentru fiecare runda, numarul de filtre pentru convolutie este dublat iar dimensiunea
iesirii fatd de intrare este injumatatita. Stratul inferior va avea cele mai multe filtre, dar va fi si
cel mai mic ca dimensiune. Scopul sau este de a invdta o reprezentare codificata a ceea ce
trebuie segmentat. Convolutia cu nuclee de 3x3x3 inseamna ca se va pierde un pixel din toate
marginile volumelor de intrare. Pentru a elimina aceasta problema, s-a folosit procesul de
padding. Al doilea pas este extinderea. Incepand cu stratul inferior, se aplica runde succesive
de upsampling, concatenare si doud convolutii (de asemenea, cu padding). Procesul de
upsampling redimensioneazi vectorul de caracteristici. Impreuna cu informatiile provenite prin
concatenarea intrarii de aceeasi dimensiune din pasul contractiei, cele doua convolutii pot
reconstrui imaginea In dimensiunea sa originald. Dupa ultima expansiune, se aplica o alta
convolutie cu numadrul de nuclee egal cu numarul de caracteristici de extras. Deoarece extractia
liniei centrale vizeaza segmentarea binard, a fost necesar doar un ultim strat de neuroni cu
functie de activare sigmoida. Functia de pierdere este aleasa astfel incat segmentarea sa se
comporte ca o functie de clasificare la nivel de voxel.

Cantitatea limitatda de memorie video face imposibilad utilizarea ca intrare pentru o retea
neurali a unui intreg volum CT. In imaginile 2D, dimensiunea memoriei nu este o problema,
chiar si atunci cand se lucreaza cu loturi mari. Prima abordare a fost de a redimensiona volumele
(si volumul cu valoarea de adevar) la un volum care ar fi suficient de mic pentru a se potrivi in
memoria placii video. Cu toate acestea, pierderea de precizie la redimensionarea la marimea
originala a facut rezultatul inutil pentru segmentarea liniilor centrale care sunt prin natura lor
subtiri. Antrenarea modelului folosind redimensionarea a ridicat si probleme cu setul de date
care era prea mic. A doua abordare propusa a fost de a imparti volumele in patch-uri, tdind doar
parti mici din volum (si valoare de adevar) pentru intrarea in retea. Aceasta metoda nu are
niciunul dintre dezavantajele celei propuse anterior, dar introduce una diferita: lipsa Intregului
context. Prin urmare, se ajunge la un compromis intre cresterea dimensiunii patch-urilor, astfel
incat informatiile contextuale disponibile pentru model si fie suficiente pentru o predictie buna,
si dimensiunea modelului, astfel incat modelul sa fie suficient de mare pentru a capta corelatiile
cu privire la locul unde se afla pozitionata linia centrald si ca aceasta este continua si poate
traversa patch-urile. Pentru a genera segmentarea completa, solutia utilizata a fost impartirea

11

intrdrii in blocuri de forma patch-ului, trecerea fiecarui bloc prin model si recombinarea
predictiilor intr-un volum 3D complet.

Pentru ajustarea treptata a ponderilor modelului in timpul antrenamentului este necesara
o functie de pierdere care ar trebui aleasa pentru a cuantifica cat si in ce directie se ajusteaza
parametrii, astfel incat, la urmatoarea iteratie, iesirile sa fie mai aproape de obiectiv. Niciuna
dintre numeroasele functii de pierdere propuse in literatura stiintificd nu se potriveste cu
specificul setului nostru de date. Este necesara o functie care sa functioneze cu linii centrale rar
adnotate, ceea ce inseamnd cad exemplele ar putea fi contradictorii si, In acelasi timp, cu un
imens dezechilibru de clasd. Introducem o functie de pierdere care este o combinatie intre
pierderea focala si o pierdere prin suprapunere, combinand astfel o functie de pierdere locala
cu una globala.

Pentru a testa implementarea retelei neuronale propuse, folosim setul de date din cadrul
benchmark-ului Rotterdam [7]. Acest benchmark are ca scop evaluarea algoritmilor pentru
extragerea liniei centrale din datele angio CT. Setul de date este impartit intr-un set de
antrenament si un set de testare. Setul de antrenament este format din 8 imagini volumetrice,
iar setul de testare este format din 24 de imagini volumetrice. Fiecare volum contine patru linii
centrale, fiecare continand Tnca patru puncte de referintd. Imaginile setului de antrenament
contin in plus valoarea de adevar a segmentarii sub forma unui fisier de referinta pentru vasele
de sénge tinta. Acest lucru il face dificil pentru algoritmii de invatare supervizati, deoarece
multe dintre vasele de sange nu sunt raportate ca parte a segmentarii. Cele 8 volume de intrare
segmentate au fost impartite intr-un set de antrenament cu sapte volume si un set de validare cu
volumul ramas, lasdnd un volum in afara, de aceea a fost utilizata validarea holdout. Desi
numarul este mic, utilizarea patch-urilor augmentate ajuta la reducerea problemei unui set de
date foarte mic.

Modelele au fost antrenate si testate pe un NVIDIA GeForce GTX 1060 cu 6 GB VRAM.
Timpul de antrenare a fost masurat la aproximativ 8 ore pe placa video mentionata anterior.
Timpul de predictie si procesare pentru o intrare de dimensiunea patch-ului variaza intre 400ms
st 600ms, in functie de dimensiunea patch-ului si dimensiunea modelului. Pentru un volum
complet, acest timp este inmultit cu numarul de patch-uri care compun un volum. La
aproximativ 80 de patch-uri si 500ms pe patch, iesirea completa este calculata in aproximativ
40 de secunde. Combinarea patch-urilor si post-procesarea pentru salvarea rezultatului sunt
neglijabile ca si timp. Timpul de antrenament face ca explorarea spatiului hiperparametrilor
modelului sa fie o operatie costisitoare, si se pot realiza configuratii mai bune prin integrarea
algoritmului in platforme de explorare automata a spatiului hiperparametrilor. Spatiul de
cautare trebuie definit mai rigid, iar parametrii propusi aici sunt un inceput bun.

Urmarind formatul fisierului de referinta, am creat un instrument pentru a genera o masca
volumetricd pentru fiecare imagine de intrare a setului de antrenament, care serveste drept
volum de adevar in algoritmul de invatare supervizat. Instrumentul poate fi parametrizat pentru
a specifica latimea in voxeli a liniei centrale.

Antrenarea retelei cu arhitectura propusa a fost realizata cu diferite configuratii pentru
urmatorii parametri: dimensiunea patch-ului de intrare, reducerea numarului de neuroni in
nuclee, dimensiunea lotului, folosirea sau nu a patch-urilor fara nici un singur voxel marcat ca
fiind linie centralda. Constrangerea dura aplicata parametrilor este data de cantitatea limitata de
memorie a placii video. Un exemplu de constrangere: daca dimensiunea patch-ului de intrare a
fost marita, dimensiunea lotului sau a numarului de nuclee convolutionale din straturi trebuie
redus.

Platforma Batchgenerators [8] a fost utilizata deoarece a furnizat o gama larga de
transformari si include augmentarea spatiala, potrivita pentru datele de intrare 3D. Patch-urile
au fost augmentate cu transformari spatiale, transformari de culoare, transformari de zgomot.
Doar transformarile spatiale sunt aplicate, cu aceiasi parametri, volumului de adevar. Fara
augmentari, setul de date a fost prea mic pentru ca antrenamentul sa fie convergent.

12

Notiunea clasica a epocii, in care epoca inseamna o trecere peste Intregul set de date de
antrenament, nu se va mai aplica atunci cand se lucreaza cu patch-uri tdiate aleatoriu. Termenul
epoca este definit aici prin inmultirea numarului de volume din setul de antrenament cu cea mai
mare dimensiune a volumului de intrare si apoi impartita pe fiecare axa cu dimensiunea
corespunzatoare a patch-ului, si rezultatul impartit la dimensiunea lotului. Rezultatele sunt
raportate pentru diferite epoci, in functie de diferitele dimensiuni ale patch-urilor de intrare.
Pentru setul de date de antrenament, valorile pentru o epoca sunt calculate ca medie pe toate
patch-urile de intrare. Pentru setul de date de validare, valorile pentru o epoca sunt calculate
prin asamblarea intregului volum din patch-urile de iesire si compararea acestuia cu intregul
volum de adevar. Rezultatele sunt prezentate sub forma unei perechi de precizie binara si
suprapunere. Este prezentata si validarea vizuala pentru volumele de iesire.

Contributia principala a acestui capitol este implementarea unui U-Net 3D, adecvat pentru
segmentarea liniei centrale a arterelor coronariene. Arhitectura are la baza o retea neuronala U-
Net 2D, conceputa initial pentru segmentarea vaselor retinei, si dezvoltarea unei versiuni 3D
capabila sa segmenteze cu precizie de voxel. Am creat o noua functie de pierdere conceputa
pentru a combate doud probleme simultane, de obicei legate de segmentarea medicald
volumetrica: dezechilibrul imens de clasa si adnotare rard. Fara aceasta functie de pierdere,
convergenta antrendrii modelului nu a fost garantata chiar si atunci cand se utilizeaza intrari
augmentate. Am demonstrat convergenta antrenamentului utilizdnd o a doua functie de
pierdere, incepand cu o retea preantrenata cu functia de pierdere propusa. Fara pregatire,
antrenamentul direct cu cea de-a doua functie de pierdere nu ar converge.

13

I wish to express my deepest gratitude to those who assisted me and understood
thé tough journey of all these academic years.

14

15

BN CONTENTS . g

INEFOTUCTION ...t R Rt R R bRt b e bt bt nnen e 22
1. The objectives Of the thESHSciiiii ettt 22
2. ThesiS StrUCIUIE @N0 CONTENT........cciiiiieiieiee ettt ettt et et b et beebe e s e e st e stesbesbesbeeteane e 23

1. Lossless image compression wWith contextual MEMOTYccvcveiiiiiie i 26
1.1 OVBIVIBW ...ttt h R R R R e Rt R R R R Rt r et 26
1.2. REIAIEA WOTK ...ttt sttt b s e et sb et e s be et e e b e ent e eeneesbesreereens 26
1.3. PAQ8PX algorithm for lossless image compression in detail............cccoeoieniiiiiiiiincs e 28

IR 200 I 1< ST] o] [S T 28
I R €= T | I] o= od iSSP 29
1.3.3. MOTRIING ..tttk bbbt b bbbt b e bbbt 29
1.3.4. IMAQGE COMPIESSION......tviiititeseetist ettt ettt bbbtk b st b bbbt b bbbt b e b et bbb 30

IO B0 0 1= ox 11T o [=1] Vo USSR 30

IO R0 [To T =Tt o (oo (=T T oo OSSR 30
1.3.4.3. Least SQUAreS MOGEIINGouriiiiiiietiiteect sttt b e 31
IR I B o (1 -1 o] RSSO 31
1.3.4.5. GraySCale B ..o e ettt ettt et ente e re e re e reanaean 33
I T @0 1 (= (B 1 1D 2o USSP 33
1.3.6. Adaptive probability MAPRS ... bbb 34
1.3.7. Other CONSIABIALIONS.ccviieeieieieeiieie ettt ste st r e e s e e st e tesaestesseeseeseensestesaeneesneeseenens 34
1.4. The proposed method — CONtEXIUAI MEMOIYcc.viiieiie ettt sre et nreeneesre e 35
IO I 0T 1 (= (1 10T [=1 11T SRS PP 36
1.4.2. Description of the contextual PrediCtion ... 37
IR Y/ o o[- B o =T [ot T o PR 37
1.4.2.2. INterpretation OF VAIUES.coii ettt et e s raesae e 37
1.4.2.3. Updating the MOGEloooeie e ettt et ta e ae e 38
1.4.3. Memory implementation and VAriations............ccoeeiiieiieneees e 39
1.5, QUANEITYING The BITONeiiiieiie ettt bbbt sb st ebesr e e et e e e et e 41
1.6. EXPEriMENtAl RESUILSoeiitiiiiii ettt b e bbbt et e e b et b sbe b 42
1.6.1. PAQ8PX Contextual Memory implementation detailsccooveeiiiiiiiiiie e 42
1.6.2. Evaluation on the BeNChMArKS ..o et 42
1.6.3. DISCUSSION ON the TESUILSveieeeieceeeieic ettt reneesneereene e 45
O o] o [od 1] o] OO UTT PRSP 46

2. A novel contextual memory algorithm for edge deteCtioncocooeiiiiii i 48
B2 @ Y T -SSP 48
B T -1 0= IR ST 48
2.3 Berkeley Edge Detection BENCHMAIKc.cooiiiiiiiiiee et 49
2.4 Basis for the contextual memory and the processing PIPelinecoeeeiiiiii i 50

A I oo T 53 £ (ol (=T 151 o o USSR 50
2.4.2 ENSEMDIE TEAIMING ... cveiieiiiiie ettt et et e e et e sresbesseeneese et e neesreneenrennes 51

2.4.3 CONLEXE MOUBIING ...ttt ettt et b e bbbt e b et e ke sbe b e e bt e be e s e et e nbesbenbenbeene s 53

2.3.3 Resources and hashing as @ SOIULIONc.ceiiiiiieiienete e 53
2.4 An original method for contextual Prediction ..o 54
P R |V o To (=T I =T [o OO OO OSSPSR PSR 55
2.4.2 Updating the propoSed MOUEL..........couiiriiiiiieiie e 57
2.4.3 IMPIementation GETAIIScoeiiiieiie e 59
2.5 RESUILS ...t R b bR bbb bbbt re b 60
2.5.1 Inputs, preprocessing and processing arChitECUIEcccvvvivereieeieie e 60
2.5.2 Results on Berkeley Edge Detection BENChMAark............cccoeieiiiineiiinciseneeseee e 61
2.6 CONCIUSIONS ..ottt ettt b et e st s e b et e et bt e b e e bt e st e s e besbe e b e e beebe e s e enteseesbesbesbeeteene e 73
. Coronary centerline extraction from CCTA USING 3D-UNELccceiiiiiiiiiicieeece e 76
3L OVBIVIBW ...ttt bbbttt bbbt b b e a2 s e b ekt A H e e b€ e b e e b £ 2R e e b e bt e b e e b e e b e eh e e b e e Rt e b b e bt ebe et e ne e 76
KT R LT -1 C=To IR o USSP 77
3.2.1. Rule based centerling eXIraCtiONcooeieiiiiiieeieiere ettt st ee e sreseeeneeneas 78
3.2.2. Machine learning based centerling eXtraCtionccceiiveieeiiiii e 78
TG I o (] T T=To N1V < oo Yo S 79
3.3.1. Neural NetWOrk ArChITECIUIEiiiiieee ettt st sreeneeneas 79
3.3.2. RESIZE OF PAICNES ...ttt bbb bbb bbb 81
3.3.3. 0SS TUNCLIONS ...ttt bbbt bbb e bkt sb e e bt e bt e bt e e et et nb e b e nbeene s 83
313.3L L. LOCAI IOSS ...ttt bbb b bbbt e et b e b ae e 83
TR T 7 €] o] o I o TSP 83
3.3.3.3. ComMDBINEd 10SS FUNCLIONSocuiieeieieiieee sttt sneeeeene e 84
3.3.3.4. Proposed 10SS TUNCHIONccviiieiicic sttt te e te e st e st et esteenaeenee s 84
3.3.4. Generating the FUIl OULPULcciie et sre e naeebeeneennee e 85
3.4, EXPEIIMENTAI SEEUD ..vieeieiteeeit bbb bbb bbb bbbt 86
34,1, COTONANY GALASEL.......e.eeteiteieteit ettt ettt b et b e bbb bbb b bt e b e e bt e bt e bbb et e s b e ebe b 86
Bu4. 2. VISUBHIZATION ..ot bbb bbb bbbt bbbt e e et e bbb beeneas 87
KRG T G- Tot U o ST (U o RSP P 88
344, TraiNiNG the NEIWOTKcc.iiiiiiei bbbttt ettt et 88

B TR TR (-]SSP 90
3.5.1 NEIWOIK PAIAMELELSeeeeieiete sttt sttt et b e bbbt et e b et eebesbesbe e bt ebe e s e e b e nbesbesbesbeeneas 99
3.5.2 3D U-NET PYthon dePenTeNCIEScviiiiiiiiiiiiirieeiieieie ettt st see e 103
TG T I o] 11 (o] o P 104
T 03 Tod 1013 (o] P 106
 FINAT CONCIUSIONS. ...ttt bbbt bttt et eb e bt b e bt e bt e ne e b e sbesbesbeebeens 108
I o] 1o 1] o] OO TSSO TR URUR 108
T Yo g L O Ta1 1|00 o] 109
4.2.1 L0OSSIESS IMAGE COMPIESSION ...ttt sttt sttt sttt sttt sttt b e bbbttt st ettt ebe st e ene st 109
4.2.2 Image segmentation With edge deteCtioncooiiiiiiiiiii e e 110
4.2.3 Automated coronary centerline extraction from CCTA ..ot e 110
4.3 Dissemination Of the reSEArch reSUILS..........oviiiiiiiiree s 110

17

BN L|ST OF FIGURES N

Figure 1 PAQS8 Image compression dia8rameeeeeeeeeeeeeeeeeeeeeeeeeeeseessnnnns 29
Figure 2 Causal pixel neighborhood.............cccovmeiiiiiiiiiiiiiiii s 32
Figure 3 Block scheme of the proposed prediction using the contextual memory method..............ccccceeee...... 35
FiUIre 4 CONEEXES @S FAYS . cceueeeeeeemiemmmmmeemeeiemiimeeeeeeeeeeeeeeeeeeeeeeeeeesesssesessses 36
Figure 5 Block scheme for the proposed update algorithmcoeeseeennne 38
Figure 6 Quantified error for image "8068" from BSD500 [38] with (a) original image, (b) pixelwise coding
cost, (c) high contrast centered difference of coding costs, (d) computed disagreement........................ 42
Figure 7 (a) Example BSD500 test image “2018” with (b) ground truthccoeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneee. 50
Figure 8 (a) Position of pixels as rays of length 5; (b) ray length 3 (green), length 4 (blue), length 5 (orange) 53
Figure 9 The prediction scheme for each pixel of one channel of a layer...........ceeueeeeeeeeeeeeeeeneeeennnneeeeenneeenennne. 55
Figure 10 (a) uniform distribution of points; (b) non-uniform distribution of pointscccccceeeeevimreerireecnnnee 56
Figure 11 Block scheme for the proposed update algorithmceeeeeeeeeeeeeennnennnnnneneeneeneeeeeeeeeeeseeesesssssssasee. 58
Figure 12 Contextual memory single layer processing architectureeennne 61
Figure 13 Contextual memory multilayer processing architectureeeennne. 61
Figure 14 (a) sample image from the benchmark along with (b) the ground truthccceeeeeeeeeeeeeeeeeeeeneneee. 62
Figure 15 Output example after NMS and thinnNingceeeeeeeeeeeeeeeeeeeeeenmeemeeememesssssessssssssssssssssssssssssssssssssssssss 67
Figure 16 Output of the proposed method on the training image “197017”, (a) original image, (b) proposed
outpUL, (C) BroUNd trULR.eeeeeeeieeieecccceeeeecr e ccceeree s e e e s e ssnnnee s e e s s s s s snnnsesessssssssnnnsensssssssssnnnnessesssssssnnnnans 68
Figure 17 Output of the proposed method on the test image “51084”, (a) original image, (b) proposed
output, (C) BrouNd trUth.ee s s s s s s s an 69
Figure 18 Output of the individual layers on the test image “51084”, (a) first layer (b) second layer (c) third
V2T (e IR {0 o d 1 T 1 V=T RN 70
Figure 19 F1 Score plotted against threshold..............ceeeeeeeeeeeeeeeeeeeeememmeemnemeeeeeeeeeeeeeeeeeesseessssssssssssssssssssssa.. 71
Figure 20 Cross Entropy for the first 50 images of the dataset (lower is better)cccoovcrerrrrecceiicneeerereecennne 72
Figure 21 Precision in respect to the threshold (bigger is Better)ccccceeeeirrereeiiiieicirreeeeere e 73
Figure 22 Result of centerlines (left) to vessel segmentation (right) using sphere fitting, from [78]............... 77
Figure 23 Example vessel segmentation from extracted centerline using set evolution active contour, from
[BA]eeeeueeeeeeennnnnenennnneeneeneennsnsnsssnsssssnnnnnnnnns 78
Figure 24 The original U-NET architecture, from [6]cceeeeeeeeeeeeeeemeeeeeenmmmmmemenmeemmeessmessmsssssssssssssssssssssssssssssss 79
Figure 25 Example Retina Vessel Segmentation using a 2D U-Net Architectureccccceerrirrrreeiiccirineeneennnns 80
Figure 26 The proposed 3D U-Net archit@ctureccceeeeiiiiiiiiieieeiciiiiiieerieessces e reeneesssesseeeennssssssssssesnnnsssnnns 80
Figure 27 Downscaled and upscaled centerline ground truth (80x80x64) plotted in 3D to highlight the
difficulty of uSing it fOr traiNiNgcccociiiiiiiiiiiirrrrcrrrrrrrr s s s s s s s s s s s
Figure 28 2D slice of an augmented patch with ground truth next to it......ccccceennne.
Figure 29 Output volume composed from patches with visible stitching..........ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneneennnne.

Figure 30 3D Slicer Volume Rendering with CT-Coronary Arteries preset
Figure 31 (a) Training 128x128x96, batch size 1, reduction 1, only patches with ground truth (b) Validation. 91
Figure 32 (a) Training 128x128x128, batch size 2, reduction 2, only patches with ground truth (b) Validation91
Figure 33 (a) Training 256x256x128, batch size 1, reduction 2, only patches with ground truth (b) Validation91
Figure 34 (a) Training 256x256x128, batch size 1, reduction 2 (b) Validation...........cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennee. 92
Figure 35 (a) Training 320x320x64, batch size 1, reduction 4 (b) Validation
Figure 36 (a) Training 384x384x48, batch size 1, reduction 4 (b) Validation
Figure 37 Patch size 128x128x96 rendering of ground truth (red) and centerline segmentation (transparent

VEIOW) e e e e e e e e e e e e e e e s e e e e s s e s s s s s s s s essessesesesessssesssassesssssssssseesssssseesassaneannnnnnns 93
Figure 38 Patch size 128x128x96 rendering of ground truth (red) and thinned centerline segmentation

L= =TT 1) R SPTRRROE 93
Figure 39 Patch size 128x128x128 rendering of ground truth (red) and centerline segmentation (transparent

VEIHOW) 1o s e e s s s s s s s e s s s e s e s e e e s e e e s e s e e e e e e e e e e s e e e e e e e e e e e e e e e e e eaeeaes 94
Figure 40 Patch size 128x128x128 rendering of ground truth (red) and thinned centerline segmentation

L= =T=] 1) R 94

file:///E:/Dropbox/Doctorat/thesis/Alexandru%20Dorobantiu%20-%20PhD%20Thesis.docx%23_Toc84328889
file:///E:/Dropbox/Doctorat/thesis/Alexandru%20Dorobantiu%20-%20PhD%20Thesis.docx%23_Toc84328890

Figure 41 Patch size 256x256x128, training with only patches with ground truth, rendering of ground truth

(red) and centerline segmentation (transparent YEllOW)ccceeeccirveeeeriiiiicissnneeneissccssneneesessssssssnnnnens 95
Figure 42 Patch size 256x256x128, training with only patches with ground truth, rendering of ground truth

(red) and thinned centerline segmentation (8re@n)cccceeeeeiriiiiiiiiiiisiissisissssssssssssssssssssssssssssssssssssssnsnns 95
Figure 43 Patch size 256x256x128 rendering of ground truth (red) and centerline segmentation (transparent

VEIOW) oo s e s e e s s s e s s s s s s s e e s s e s s e s e s s e e e e e s e e e e s e e e e e e e e e e s e e e e e e e e aannans 96
Figure 44 Patch size 256x256x128 rendering of ground truth (red) and thinned centerline segmentation

L= =TT 1) R SPPRTRROE 96
Figure 45 Patch size 320x320x64 rendering of ground truth (red) and centerline segmentation (transparent

1YL= 11 11 RS PRTRPPN 97
Figure 46 Patch size 320x320x64 rendering of ground truth (red) and thinned centerline segmentation

(BIEEN) ..eeecccccccccrrrrrrsrsrrsssss s s s s sssnnnnnsssnnnnnsnnnnns 97
Figure 47 Patch size 384x384x48 rendering of ground truth (red) and centerline segmentation (transparent

VEIOW) oo s s e s e e e s s e s s s s s s s e e s s s e s s e e s s e e e e e s e s e e s e e e e e e e e e e e e e e e e e eeaaanans 98
Figure 48 Patch size 384x384x48 rendering of ground truth (red) and thinned centerline segmentation

L= =TT 1) [T SPPRTRRRROE 98
Figure 49 Loss function switch (a) Patch size 128x128x128 (b) Patch size 256x256X128ccccccreerrrerernnns 105

19

| (ST OF TABLES e

Table 1 Waterloo gray test Set L.........ccccvvveeiiiiiiiiiiiinniiiiiiiiiiineeeesiissssssssees s sssss e s ssssssssssseessssssssssnsssessssses 43
Table 2 Waterloo gray test St 2.........cccevveeiiiiiiiiiiiiinniiiiiineeees e ssss e s sss s e e s s s ss s sanss e s s ssas 44
Table 3 Imagecompression.info 8bpp gray new test images........ccccvviiiiiiiiiiiiiiiisssseeenn 44
Table 4 Squeezechart 8bPP raysCale ... e s s s s s s s s s s e s s e seenees 45
Table 5 Compression running time comparison on image lena2 (expressed in seconds)ccceeeeeeeeeeeeeeeennnns 45
Table 6 Results for the single layer contextual memory edge detectorcccceeeviiiiieeeiieieeieeeeee e 62
Table 7 Results for the multilayer architecture of the contextual memory edge detector............cceevvvivveinnnnns 66
Table 8 Comparative results of the contextual memory edge detectorcceevvviiiiiiiiiiiiiiinnnnn, 71
Table 9 The size and resolution of each CTA volume from the training dataset [84].......ccccoccerrverrerrcrieneriennns 86
Table 10 The overlap and accuracy results for the selected hyperparametersccccevviiiiiiiiiiniininnnn, 90
Table 11 Network parameters for Input Size 128x128x96, model reduction 1.........ccccceeevivuneeeiriisissssnneeennnns 929
Table 12 Network parameters for Input Size 128x128x128, model reduction 2...........cccceeevviueereeiriiicsssinnnenns 100
Table 13 Network parameters for Input Size 256x256x128, model reduction 4..........ccceeevvereiieeeeiiieeeeeeeeeeens 101
Table 14 Network parameters for Input Size 320x320x64, model reduction 4..........cccceeeeeeiriereeieinieeeeeeeeeeens 102
Table 15 Network parameters for Input Size 384x384x48, model reduction 4..........ccceeeveeeieiieeiieieieeeeeeeeeeens 103

20

21

BN NTRODUCTION I

Introduction

Multislice computed tomography (MSCT) imaging sequences can be used to clarify
coronary anatomy and to determine if blood vessels are narrowed or even blocked. Deposits
that stop blood flow are called coronary lesions. Visualization of lesions that can cause ischemia
and their identification is useful for non-invasive diagnosis. The characteristics of these lesions
can be used to predict whether they are at risk of rupture or displacement, causing acute
coronary events. Computer vision and image processing techniques such as segmentation and
feature extraction can be used to isolate, highlight, and classify these features.

1. The objectives of the thesis

This work is focused on automated coronary centerline extraction from Cardiac
Computed Tomography Angiography (CCTA) data. This belongs to the domain of medical
image segmentation, which, at the time | picked the subject for my thesis, was a hot topic in the
imaging research community [1]. The numerous research challenges related to this issue
strengthened the idea that this topic is a promising one. Furthermore, having a large community
working in that direction meant benchmarks and other required datasets would be available.

This thesis approaches three domains, seemingly distinct, and | would like to clarify how
these three go together towards the final goal.

Starting from the idea of segmenting the centerlines of the coronary vessel tree, the
analysis of this topic led me towards the domain of information extraction. The simplest way
to validate the accuracy of understanding the information conveyed by the pixels of an image
is to try modeling the features of the image and predicting the values of the pixels in a given
context. This process is used in data compression, where a better predictor leads to a better
compress ratio, and the results are quantifiable. This process is done in an on-line manner,
meaning that the predictor always starts from an empty model, and has to update the internal
state with each prediction made. Without starting with an empty model, for the decompressor
to work correctly it needs the predictor model which was used for compressing. This implies
that, depending on the model size, the gains of the compression will be diminished, or it may
even lead to inflating the stream. Starting from an empty model also puts a big burden on the
predictor, meaning that feature extraction needs to be done as fast as possible, and in a single
pass over the bitstream. Whether the images are 2D or 3D, the techniques used for compression
are similar. Machine learning is a helpful tool for extracting statistics from the data. These
statistics are then used for generating next-bit probabilities, which, together with an entropy
coding strategy, form a lossless file compressor. The first step in improving the existing state
of the art compression methods was to understand the details and where the predictive power
comes from. | then proceeded to extend the existing algorithm with an original idea, inspired
from ensemble models, combined with reinforcement learning. There is always a compromise
between the quality of prediction and computational cost. For the proposed algorithm, several
optimizations have also been provided.

By plotting the pixelwise coding cost of a statistical lossless image compressor, it can be
seen that the resulting image is very similar to the output of an edge detector, and the big
difficulty the predictor has in the strive for accuracy is to find the position and the global shape

22

of the objects’ edges. Naturally, the next step was to implement a contour detector, which is a
form of image segmentation — detecting which pixels from the image belong to the contour.
This is also a case of thin segmentation. The feature extraction needed for this task does not
work so well as with on-line learning, since better results can be yielded with domain
knowledge. | extended the proposed algorithm for data compression to an off-line learning
framework, and | added the ability to use supervised learning. The benchmark used for
validation provided the segmented edges for the ground truth coming from multiple user
submissions. Most of the submissions did not agree on all the objects to segment, because the
semantic segmentation was subjective. In order to address this, | extended the processing
pipeline from a single layer architecture to a multiple layer architecture in the hope of catching
these semantic details. The multilayer architecture proved to give better results.

Medical image segmentation borrows the techniques from the general-purpose image
segmentation, and introduces domain specific knowledge. It is used to obtain new information
and projections from the available inputs. My attention turned to deep learning, where the basis
of feature extraction was to add many layers to the network architecture, in the hope that
intermediate layers will provide useful abstractions. By useful I do not wish to convey that they
are meaningful to humans, but useful for prediction. Convolutional neural networks (CNNSs)
are designed in such a way that they make the assumption that neighboring inputs share a
correlated cause. The assumption holds for images, may them be planar or volumetric. CNNs
often contain pooling layers after convolutional ones, which help reduce the number of neurons
needed. They make the network less susceptible to overfitting and faster to train. There are
downsides to using deep learning, such as the need for many training samples for the right
abstractions to be generated in the deep layers. In the medical imaging domain, large enough
and completely annotated datasets may be hard to procure.

Applications of medical image segmentation include shape analysis, for example
melanoma shape analysis used for skin cancer detection, volume and volume evolution analysis,
used for example in the tumor analysis, and mass detection, where material densities are added
as domain knowledge to the volume analysis. Other applications are related to computer aided
diagnosis (CAD), by providing tools for assisting human experts, finding regions of interest,
visualization, and the option to isolate, highlight and classify features.

Some of the challenges in medical image segmentation with machine learning which had
to be overcome at the time of this writing include:

e Finding the appropriate network architecture along with a good strategy to train
the models, with no silver bullet expected [1]

e Creating or finding representative datasets, with enough data to train the
algorithms, and with high enough variability for the network output to be reliable

e 3D architectures require a large amount of computation power and computing
system memory

e A lack of good open-source resources, since many research projects are funded
by private companies

e Few frameworks for result validation and comparison

o Difficulties of integrating the algorithms (due to their experimental nature) into
production pipelines

2. Thesis structure and content

Developing the ideas presented above, the thesis is organized as follows:

Chapter 1 is focused on information extraction from images and improving general
image compression. With the increased use of image acquisition devices, including cameras

23

and medical imaging instruments, the amount of information ready for long term storage is also
growing. In this chapter we give a detailed description of the state-of-the-art lossless
compression software PAQ8PX applied to grayscale image compression. We propose a hew
online learning algorithm for predicting the probability of bits from a stream. We then proceed
to integrate the algorithm into PAQ8PX’s image model. To verify the improvements, we test
the new software on three public benchmarks. Experimental results show better scores on all of
the test sets.

Thin segmentation and edge detection play an important role in many computer vision
systems. Therefore, in Chapter 2, we propose a novel application agnostic algorithm for
prediction of probabilities based on the contextual information available and then apply the
algorithm for estimating the probability of pixels belonging to an edge using surrounding pixel
values as local contexts. We then proceed to test different image transformations as input layers,
such as the Canny edge detector. We propose two different architectures, a single layered one
and a multilayered one, which approach the scaling problem by creating scaled side outputs and
combining them via a logistic regression layer. We tested our approach on the BSDS500 edge
detection dataset with optimistic results.

Chapter 3, focuses on medical image segmentation, where the mesh-type coronary
model, obtained from three-dimensional reconstruction using the sequence of images produced
by computed tomography (CT) can be used to obtain useful diagnostic information, such as
extracting the projection of the lumen (planar development along an artery). We propose an
automated coronary centerline extraction from cardiac computed tomography angiography
(CCTA) proposing a 3D version of U-Net architecture, trained with a novel loss function and
with augmented patches. We have obtained promising results for accuracy (between 90-95%)
and overlap (between 90-94%) with various network training configurations on the data from
the Rotterdam Coronary Artery Centerline Extraction benchmark. We have also demonstrated
the ability of the proposed network to learn despite the huge class imbalance and sparse
annotation present in the training data.

Chapter 4 draws the final conclusions, highlighting the main contributions of this thesis,
and presents the dissemination of the results mainly in journal papers [1-3,5,9], and in [10].

24

25

I CHAPTER] g e

1. Lossless image compression with contextual memory

1.1 Overview

The first part of the thesis is focused on information extraction from images, and a good
objective metric of how well an image is understood is through compression size.

Why is compression a difficult problem? In general, when it comes to predicting
something, you need to understand the process behind the result. This requires acquisition of
knowledge about the environment and the potential dynamics. For example, if you know the
English language, it will be rather easy to predict the letters missing from a truncated sentence.
Predicting the value of the pixels in an image requires deep understanding of what is represented
in the image. The predictor needs to create an internal representation of segments that
correspond to features of the image, like shapes, patterns, textures, borders, and then make the
guess based on which part of the segmented image it is currently in.

An important application of image compression is in the field of medical imaging.
Whether the images come from radiography, magnetic resonance imaging, ultrasonography or
by other methods, the number of acquired images is growing, which makes it increasingly
necessary to use advanced compression methods. There are two important operations that
require improvement: the storage of images, be it for long or short term (archiving), and the
transmission of images via networks. When it comes to quality, lossy methods need to keep the
quality of the image high to prevent mispronounced diagnostics. There may be cases where
medical law would state that a copy of the medical images should be long term stored in lossless
mode to allow diagnostic reconsideration in case of legal proceedings.

In this chapter we describe the state-of-the-art image compression method called
PAQ8PX and introduce a new algorithm for on-line automated learning. We tailored the
implementation for our proposed method by integrating it with PAQ8PX, which resulted in an
improved 8bpp grayscale model. We tested our implementation and obtained improvements on
four datasets belonging to three benchmarks. The research was published in [2].

1.2. Related work

Since compression is a difficult problem, the techniques used come from many branches
of algorithmics. We provide a review of several algorithms published in the recent literature
and some of which use a similar contextual method as ours.

Wavelet compression involves decorrelating the neighboring pixel values by convoluting
them with a basis function and then entropy encoding the resulting coefficients. Burrows
Wheeler transform involves applying a reversible sorting algorithm to the data, making it
compressible using simple operations. Since these methods remove the contextual correlation
in the data stream, data compression falls into the category of non-contextual methods. There
Is ongoing research in the area of non-contextual methods applied for two-dimensional or three-
dimensional images.

26

Lossless wavelet compression was improved in [11] by introducing a new family of
update-then-predict integer lifting wavelets. In [12], the authors extended the Burrows Wheeler
transform to two dimensions. The Bi-level Burrows Wheeler Compression Algorithm applies
the well-known block sorting algorithm on the rows of the image and then on the columns, for
an improved homogeneity in the 2D space. It then uses a modified Kernel Move-To-Front for
the 2D subspace before the entropy coding stage.

A mixture of lossless and lossy wavelet based color image compression has been
described in [13], where region of interest based on the saliency of the image is taken into
account when sending the image progressively through the communication network. It was
applied for wildlife photography where the images are sent through a limited bandwidth
channel. The ROI is extracted using a convolutional neural network to create a mask. Two
wavelet encoding types are then used: for the lossless part SPIHT coding, for the lossy one
EZW coding.

Deep learning for residual error prediction has been described in [14]. Here, a Residual-
Error Predictive Convolutional Neural Network (REP-CNN) is introduced with the scope of
refining the prediction of the LOCO-I and CALIC predictors. In total, three REP-CNN are
trained, one for direct prediction and two for predicting the residuals of the aforementioned
predictors. The big disadvantage of such a method is that, in order for a decoder to work, the
entire trained neural network needs to be sent along with the compressed representation.

Contextual methods are still the base for both lossless and lossy image compression.
There is a lot of diversity in the literature about the choice of context and how it is used. An
example of a lossy image compression applied for medical ultrasound images relies on
contextual vector quantization, as shown in [15]. In this algorithm, a separation method based
on region growing distinguishes a region of interest in the image starting from a seed point.
Different vector sizes are chosen for background and the contextual ROI. The regions are
afterwards encoded with high and low compression ratios respectively, and then are merged in
a final result.

Another lossy image compression for medical imaging [16] relies on contextual
prediction of the quantized and the normalized sub-band coefficients after a discrete wavelet
transform was applied.

Extending the Prediction by Partial Matching for two dimensions for lossless compression
of indexed raster images has been presented in [17]. Context models for sparse order lengths
are created and stored in an AVL-tree structure. A parallelization of the coding algorithm is
presented by splitting the image into independent blocks and compressing them individually.

Context Based Predictor Blending for lossless compression of color images is described
in [18], which is an extension of the algorithm CBPB [19], where the image is interpreted as an
interleaved sequence generated by multiple sources so that non-stationary signals are better
predicted. The blending prediction weights are selected based on the texture of the surrounding
pixels and a Pearson correlation coefficient is computed for adjusting these weights. The final
prediction also takes into account a template matching prediction. The CBPB algorithm was
also ported to parallel execution viaa CUDA implementation [20].

Vanilc is a lossless image compression framework described in [21] for 8bpp,
multichannel color images, and 16bpp medical 3D volumes. The main contribution of this
chapter is a pixel probability distribution predictor based on a weighted least squares approach
which uses a weighting function that generalizes some of the proposed contextual schemes in
the literature and provides good results when it comes to the non-stationarities in the image
while having only a few tuning parameters.

A lossless image compression algorithm is described in [22]. It is based on multi-
resolution compression for progressive transmission. It improves on prior work from [23],
where the image is decomposed into a pyramidal data structure and an edge adaptive
hierarchical interpolation is applied for coding and progressive transmission. The prediction
accuracy is improved here by using context-conditioned adaptive error modeling and by passing

27

the estimates through an error remapping function. In this way, it improves both the final bitrate
and the visual quality of the reconstructed images at intermediate stages.

Another lossless medical imaging compression algorithm using geometry-adaptive
partitioning and least square-based prediction is described in [24]. Because of the similarities
of the images obtained from the same imaging method, a prior segmentation via geometry
adaptive partitioning and quadtree partitioning of the image allows a good selection of a least
squares optimized predictor for sections of the image.

For lossless compression of 3D medical images, an extension of the Minimum Rate
Predictors from 2D to 3D has been developed in [25]. Here, 3D shaped predictors were
introduced to benefit from the volumetric redundancy, then volume-based optimizations are
applied, and hybrid 3D block splitting and classification is done. The algorithm was also
extended from 8bpp images to 16bpp images because they provide better diagnostic quality.

Lossless compression of Multitemporal Hyperspectral Images can also exploit the
temporal correlations besides the spatial and spectral ones. In [26], the Fast Lossless predictor,
a variation of the Least Means Square applied to the causal context [27], has been extended to
4D to incorporate the temporal aspect in the prediction. The residuals are computed as the
difference between the prediction and the current pixel and are then encoded using the fast
Golomb-Rice Coding.

1.3. PAQ8PX algorithm for lossless image compression in detail

1.3.1. Description

PAQ is a series of experimental lossless data compression software aiming at the best
compression ratio for a wide range of file types without focus on using few computing resources
or keeping backwards version compatibility. It was started by Matt Mahoney and later
developed by more than 20 developers in different branches of compression. PAQ8PX is a
branch of PAQ started by Jan Ondrus in 2009 and which has recently adopted the best image
compression models in the series with the help of Marcio Pais. In short, we refer to version 167
of PAQS8PX.

A detailed description of the software in its current phase is not available in literature.
The reason may be the everchanging filetype specific models and the amount of version
branching this software receives, from simplified models for fast compression, to platform
specific optimization test and generalization of the algorithms used. However, a description of
the PAQ series of compressors from the perspective of machine learning is available at [28].

The description of the overall compression algorithm and the techniques used can be
found in [29] and [30]. The PAQS8PX version has a development thread which can be found at
[31]. The source code is written in the C++ programming language and is contained in only one
file with more than 12000 lines of code. The logic was not broken into different files in order
to make it easier to compile to any platform. The big downside of this is that it makes the code
very difficult to read. Another thing that makes the code difficult to develop is that plenty
optimization techniques were inserted along the code, which can slow down the understanding
of what is going to execute and when.

The general compression scheme for image compression is presented in Figure 1.

28

Model

/ Prediction \

Image Bit Raster Context b Mdc.)dc?l Context Mixin Probability BinaryArithmetic
Scannin Modelin rediction g Refinin Coding
Model

Prediction

Figure 1 PAQ8 Image compression diagram

1.3.2. General aspects

Compressing a file goes through 4 main stages: preprocessing, model prediction, context
mixing and probability refining. An optional pre-training phase can be activated via command
line parameters.

The preprocessing phase is also split into three parts. At first, it searches through the file
to be compressed for known stream types. Based on these types, different models are activated
for the second stage of compressing. For example, it searches for image (1bpp, 4bpp, 8bpp,
8bpp grayscale, 24bpp, 32bpp, png 8bpp, png grayscale 8bpp, png 24bpp, png 32bpp), jpey,
gif, text, audio (8 and 16 bit mono and stereo), exe, base64, zlib streams, file containers and
others. After this stage, an optional transform phase is applied for certain stream types such as
text, where an End of Line transform can be applied, or EXE, where certain instructions are
replaced with others. The transform phase is then applied in reverse and if the result matches
the original stream, the transform is kept.

In the case of images, the preprocessing phase extracts the file header, which is
compressed separately, and the byte stream containing the pixel values of the image. The width
and the bit depth of the image are extracted from the header and the width is passed on to the
image model selected by bit depth.

The model prediction and context mixing phase happen consecutively. Probabilities of
individual bits from the input stream are predicted by many specialized models. All the
probabilities are combined into one probability via the context mixing algorithm. The output
probability is refined using a network of adaptive probability maps. The final prediction is used
to encode the bit from the stream using a binary arithmetic coder. The algorithm is symmetrical,
meaning that both the coder and the decoder do the same operations ending up with the same
final probability. The decoder uses the probability to decode the bit from the compressed
stream.

1.3.3. Modeling

The term model is used with double meaning throughout the compressor. At first, it is
used to denote the unit of the algorithm which outputs a probability which will participate to
the mixing phase. One can interpret this as an “elementary” model. The second meaning is the
collection of units which are modeling a given type of data. The output of such models is,
evidently, a collection of probabilities. Example models are: TextModel (for language specific
language stemming and word modeling), MatchModel (for repeatable long matches of data),
RecordModel (for data structured in records), SparseModel, JpegModel (for specific jpeg data),
WavModel, ExeModel, DmcForest (a collection of Dynamic Marcov Coding models),
XmlIModel, PpmModel (various order prediction by partial matching), ImageModels (for
different bit depth image data) and many more. One or more of this type of models is selected
according to the input stream type and compression parameters.

29

It is out of the scope of this chapter to explain models unrelated to image compression.
These can be further detailed in a paper on general compression.

1.3.4. Image compression

In the case of image streams, the match model can be optionally activated and can bypass
the image model if there is a long match found. But our focus will be set on the 8bpp image
model. The output of this model contains predictions for four types of input streams: 8bpp
indexed color or grayscale and 8bpp png indexed or grayscale. If the stream is png, a part of
the filtering scheme used is undone in order to obtain the true pixel value.

Depending on the type of image, different correlations can be expected and, thus,
exploited by specific modeling. Before describing how the specific contexts look like, we
should describe which types of operations are possible with the contexts. Three major types of
models can be identified: direct, indirect and least squares modeling. All of these models expect
byte level context values (as data coming from a file comes in byte chunks) and can output
direct probabilities, stretched probabilities or both. The context mixing stage expects
probabilities in the logistic domain (stretched probabilities) and different operations are applied
to probabilities to fit or skew them into this domain.

1.3.4.1. Direct modeling

Direct modeling is implemented with the use of stationary context maps. This type of map
takes as input a context value and outputs a weighted stretched probability and a weighted
probability centered around zero (skewing). It is implemented using a direct lookup table where
each entry stores a probability (which is then stretched and skewed) and a hit counter. On the
update phase, an error is computed as the difference between the stored probability and the
value of the bit. The error is weighted with a value dependent on the hit counter. Fewer hits on
the context value indicate a more rapid update rate. This is implemented via a lookup table
containing the values of an inverse linear function of the hit count.

For each context requiring a direct modeling, a new map must be created. This protects
the contexts from colliding with each other.

1.3.4.2. Indirect modeling

Unlike direct modeling which updates the probability based on the last probability
predicted, the indirect modeling tries to learn the answer based on a similar sequence from the
past. Indirect modeling is implemented with the use of indirect context maps, which use two
step mapping. An optional run context map is also included, which is used for modeling runs
of bits.

The first mapping is between a context value and a bit history called state. The state is
modeled as an 8-bit value with the following meaning. A zero value means the context value
has never been seen before. States from 1 to 30 map all the possible 4-bit histories. The rest of
the states represent bit counts of zero and one or an approximation of the ratio between zeroes
and ones if the number of previously seen bits exceeds a count of 16. The states are used as
indexes in a state table which contains transitions to the next state depending on the value of
the next bit. The states were empirically chosen to try to model non-stationarity and different
state maps were proposed in other compression programs [32].

The states are kept in a hash map implemented as a table with 64-byte entries to fit in a
cache line. The entries contain checksums for the context value to prevent collisions and up to

30

7 state values. Since the map expects byte data, at bit 0, 2 and 5, the bucket for a context value
IS recomputed via a dispersion function. The 7 state values can hold information about no bits
known (one value), one bit known (two values), and two bits known (four values). At bit zero,
only 3 states are needed and, as an optimization, the next four bytes implement a run map which
predicts the last byte seen in the same context value, logarithmically weighted by the length of
the run. The hash map implements a least frequently used eviction policy and a priority eviction
based on the state of the first element in the bucket. States are indexed based on the total number
of bits seen, therefore the more information available is favored.

The next mapping is between the state and one or more probabilities. This is done in a
similar manner as in direct modeling by using a state map. For each input, four probabilities are
returned, one stretched, one skewed, and two depending on the bit counts of zero and one for
that state. The fifth probability out of the indirect context map comes from the run map.

Unlike stationary maps, more contexts can be added to the indirect map, meaning that
they share the same memory space and are identified by an index. Each context has its own
state map accessed by the index. Having states modeled as 8-bit values makes them more
memory efficient than the 32-bit representation for stationary maps.

1.3.4.3. Least squares modeling

An Ordinary Least Squares modeling is used for predicting the value of the next pixel
(not bit prediction) based on a given set of context values and acts as a maximum likelihood
estimator. The prediction is a linear combination of the regressors, which are the explanatory
variables. The update phase tries to minimize the sum of squared differences of the true pixel
value and the predicted value. Finding the values of the weight vectors is done on-line by the
method of normal equations which uses a Cholesky decomposition which factors the design
matrix into an n-by-n lower triangular matrix, where n is the number of regressors. The matrix
is then used to analytically find the weight values. The bias vector and the covariance matrix
are updated using parametrized momentum.

The value of the prediction is not used directly, but is used in combination with the known
bits of the current byte and the bit position in byte as a key into a stationary context map.

1.3.4.4. Correlations

Different types of correlations are exploited for the type of images supported since we
have varying expectation of what the byte values from the input stream represent in the image.
Itis difficult to describe all the operations used and only a minimal description will be provided.
This section does not cover the png modeling.

The neighboring pixels are the best estimators for searching correlations. They form the
causal pixel neighborhood. Various notations are used for representing the position of the
pixels. A simple and meaningful representation is by using the cardinal points on a compass
(see Figure 2).

31

Current pixel

Figure 2 Causal pixel neighborhood

Each time a cardinal point is mentioned, a step of the size of the pixel is taken into that
direction relative to the pixel that is being predicted.

Palette color indexed images, as the name suggests, use the byte value to index the true
RGB color in the palette table. This means that the direct values cannot be used with linear
predictors because a linear combination would also be an index and might end up suggesting a
completely different color. Another problem is that quantizing the values will also result in
different indexes which are not matches to the expected texture in the image. Moreover, since
we know that we have 8-bit indexes, we expect that only a small portion of the entire color
plane is used. This makes the use of indirect context maps useful and context values will be
computed, for example, by hashing the W, N and NW values together.

Grayscale images or individual color planes in color images require different modeling
which is dependent on what the content of the image represents. If the source of the image is
artificial (meaning computer generated, renders, drawings or screenshots) hard edges and
continuous tone regions may be expected. Photographic images may present noise, which
makes the process of prediction more cumbersome.

Of course, like for palette images, texture tracking via indirect context maps is useful.
Contexts can now be computed also by quantizing the values or computing intensity magnitude
levels using logarithm functions of direct values or of logarithms of the difference of quotient
of two values.

Additionally, modeling for the expected pixel value is needed. The results are used as
keys into stationary maps. Various prediction techniques work in many directions, including
horizontal, vertical and diagonals.

Inspired from video compression schemes, half-pixel, quarter pixel, n-th pixel
interpolation and extrapolation provide predictions and can be combined with other predictions
by averaging, gradients and other interpolation techniques.

Linear pixel value combinations are used, such as averaging or gradients. For example, if
the two pixels from above have values 60 and 50, a combination of the form N*2 — NN will
output 40. An averaging combination of the form (N + NN) / 2 and will output 55. Another
type of combination can be a Lagrange polynomial used for extrapolating, like NNN*3 — NN *
3 + N. Extrapolated values from different directions are then combined by linear combinations
for new predictions. The result of a prediction can be negative or above the maximum value of
255, therefore two functions are applied to the result. The Clip function restricts the value in
the [0, 255] interval. The Clamp function is similar to the strategy employed by the LOCO

32

predictor for keeping the prediction in the same plane as the neighboring pixel values which are
also passed as parameters to the function.

Color images exploit the same correlations as the grayscale images, but include modeling
for the spectral correlation of the color planes. This means that an increased gradient in the red
color plane can also mean increased gradients in the other planes. The magnitude of the change
in a previous plane can be used to make predictions in a current plane or a prediction in the
current plane can be refined based on the residual of the prediction in the previous plane.

1.3.4.5. Grayscale 8bpp

In the analyzed version of PAQ8PX, a number of 62 stationary maps are used for
grayscale images. Five of them are used in conjunction with OLS modeling, in order to model
quadrants of the causal pixel neighborhood of different lengths. The others accept as keys
various clipped and clamped predictions. An indirect context map is used which accepts 27
entries as keys computed as hashed predictions. This means that the estimated number of
probabilities which are the output of the image model for grayscale images is 62 * 2 + 27 *5 =
259.

1.3.5. Context mixing

Encoding of a bit needs only one probability and the bit to code. Modeling produces, as
we’ve seen, many probabilities which need to be combined to obtain a final probability. One
option would be to do a linear combination of the probabilities and adjust the weights
accordingly after the true value is available.

The solution in the PAQ8 family of compressors is to use a gated linear network, and
context mixing being one implementation of such a network. The details of GLNSs are described
in detail in [33] which also include the mathematical proof of the convergence guarantee. The
description of the network is split into 3 parts: Geometric Mixing, Gated Geometric Mixing and
Gated Linear Networks.

Geometric Mixing is an adaptive online ensemble which was analyzed in depth and whose
properties are described in [34], [35] and [36]. The main difference to a linear mixing, which
implies weighting the probabilities directly, is that the probabilities are first transformed into
the logistic domain using the logit function (sometimes referred to as stretch in this chapter).

X
logit(x) = log (m) 1)

Then, they are linearly combined and then the result is transformed back into a probability
using a sigmoid function (sometimes referred to as squash in this chapter).

1

2
14+e>* ?)

o(x) =

The weights are updated using an online gradient descent together with a logarithmic loss.
In this way, a weighted redundancy minimization in the coding space can be achieved
(minimized Kullback-Leibler divergence) [35].

An advantage of this method when compared to regular probability weighting also comes
with the fact that weights don’t need to be normalized or clipped to the positive domain.

Gated Geometric Mixing means adding a context selector. So far, we have a neuron which
takes as input stretched probabilities and has weights associated with the input. If, instead, we
had a set of weights from which we select one based on an index, we would create a gate. The

33

index can be computed as a function of a context or as additional information. We can now say
that the neuron has specialized weights.

Gated Linear Networks are a network of stacked Gated Geometric Mixing layers of
neurons. The output of a Gated Geometric Mixing neuron is a probability. A set of neurons
which works on the same input forms a layer. The set of outputs of one layer form the input for
another layer. A final probability is obtained when a layer contains only one neuron. At a first
glance, the network looks similar to a multi-layer perceptron, but, in this case, the learning is
not done via backpropagation. Instead, each neuron output tries to approximate the end
probability, and, since each layer constructs on the output of the previous, it further improves
the result.

We present below some important considerations. The loss function is convex, which
implies a simplified training of a deep network. The network rapidly adapts to the input, making
it a perfect candidate for on-line learning. Weights can be initialized in more ways and random
assignment is not necessary because of the convexity of the loss function. The PAQS8
compressors initialize all the weights to zero with the implication that no predicting model has
any importance in the beginning and allowing a rapid update towards selecting the best
specialist. Clipping the weights and regularization techniques are also presented in [33], but are
not used in PAQ.

PAQB8PX uses a network with two layers for image compression, the first layer having 7
neurons and using as contexts functions of immediate pixels and column information, which
means that the pixel position in the image is taken into account.

1.3.6. Adaptive probability maps

Adaptive probability maps (APM), sometimes referred to as secondary symbol
estimation, have as input a probability and a context value and as output another probability.
The context value serves as an index in a set of transfer functions. Once selected, a set of
interpolation points are available. In the initial state, they should map the input probability to
the same value. The input probability is quantized between two points of the set; the output
value is the linear interpolation of the value of the points weighted by the distance from them.
In the update phase, the two end values are updated so that the output probability is closer to
the value of the predicted bit.

There are variations of the APM. One of them, which is used in PAQS8, is to have as input
a stretched probability with the benefit of having more interpolation points towards the zero
and one probabilities, where compression benefits from the fine tuning. Other compression
software products use APM with two quantized predictions as input with a 2D interpolation
plane.

It is not necessary to use only a single APM, since they can be connected in a network.
PAQB8PX uses different architectures based on the type of stream detected. For 8bpp grayscale
images three APMs are used. Two of them take as input the output of the context mixing phase
and have as contexts functions which include the current known byte bits, the number of
mispredictions in the past and whether the prediction falls in a neighborhood plane or not. The
output of the first APM is again refined and the final prediction is a fixed weight linear
combination of the three probabilities.

1.3.7. Other considerations

Predictions need to be perfectly identical when compressing and decompressing,
otherwise the decoder will rely on false data. Floating point operations cannot guarantee cross
compiler, cross processor and cross operating system this hard constraint. It became even more

34

important to have fixed rules when support for streaming instructions like SSE and AVX was
added. It was decided that fixed point arithmetic will be used across all operations. Even setting
initial values for lookup operation tables like stretching, squashing or logarithm was done by
interpolation of initial integer values or by numerical integration. Components described here
use fixed point values with varying point position. The representation can be on 16bit or 32bit
integers. For example, having the weights of the context mixing algorithm represented on 16bits
is useful when using vector instructions, since more values fit into operands. Some exception
to this rule was made for the sake of maximum compression for the wav model and the ordinary
least squares algorithm used in image compression.

Another unintuitive part is that the update part of each model takes place right before the
predict part. The first prediction is by default 0.5 since it relies on no information. Afterwards,
each time the predictor is queried, it does the update with the known bit and then computes a
prediction. This is done as an optimization since the accessed memory locations during the
update might still be loaded in cache and the prediction might need the same locations.

1.4. The proposed method - contextual memory

The idea behind the algorithm is to encode probabilities in a memory-like structure. The
probabilities are accessed by using a set of keys computed on a known context. Resilience to
noise (since lossless compression for photographic images will mostly have to deal with noise)
would be handled by allowing that not all the keys should find a match in the memory. The
block scheme of the prediction method is presented in Figure 3.

Context

Figure 3 Block scheme of the proposed prediction using the contextual memory method

35

1.4.1. Context modeling

When it comes to predictive compression, we need to decide what best describes the part
of the image we are currently trying to predict. This means that we need to look around the
target pixel in the hope that the information will be enough to help a decision mechanism
recognize which part of the image we are in and choose to use the appropriate representation of
the internally created segmentation of the image.

Before continuing, we need to define the terms used in Figure 3. We denote by the word
context the region of the image which participates in the prediction mechanism. Context value
is the numeric value of the context, either a direct value or a function of that value, which will
be used as index in the memory structure. The algorithm makes no assumption about the
memory structure, but we provide some implementation details. The output of indexing the
memory is the memory value.

We choose a simple model for contexts for predicting the bits of the pixels. We use rays
in four directions and having various lengths, and the quantized derivatives along the rays. The
rays are depicted in Figure 4. Since the pixels of the image are predicted from left to right, top
to bottom, the only information we can rely on are known pixels, which means the directions
are to the west, 45 degrees north-west, north and 45 degrees north-east. We choose rays of
varying lengths from length 1 to 7, but use this as a parameter. The derivative with respect to
the intensity value is computed as the difference between the consecutive pixels of the ray and
quantizing is done by masking the lower order bits from the derivative. We use three levels of
quantizing, each cutting out one more bit than the other. The current pixel participates in the
contexts only with the currently known bits.

Current pixel

Figure 4 Contexts as rays

In order to compute the context value from the contexts, we use a hashing function. We
chose Fowler—Noll-Vo hash function (FNV) which is a non-cryptographic one byte at a time,
however designed to compute fast and with a low collisions rate. It is found to be particularly
suited for hashing nearly identical strings [37].

As an optimization, since we know that we will need to compute hashes for rays, we
exploit the fact that FNV computes one-byte-at-a-time hashes and pass as input only the longest
ray and output all the intermediate results. We apply the same optimization for the quantized
derivatives of the rays.

36

1.4.2. Description of the contextual prediction

1.4.2.1. Model Prediction

To make a prediction, we propose the following algorithm:

We obtain a value from the memory for each context. One way to do that is to index the
hash of the context value in a table

We average all the obtained memory values

Convert the average into a probability using the sigmoid function

n

p=o0 <§Z Ui>'vi = M[i][hash(c;)] 3)

i=0

p is the output probability (that a bit is one),

n is the number of input contexts,

ci is the context value of the i-th context,

vi is the memory value from the memory M for context i,
k is some ad-hoc constant

o is the sigmoid function.

1.4.2.2. Interpretation of values

Logistic regression is a way of combining probabilities when they are fed as input to the
algorithm. Using stretched probabilities as input (applying logit function to them), logistic
mixing becomes optimal for minimizing wasted coding space (Kullback-Leibler divergence)
[34] because the weighting becomes geometric.

mix = Bo + Prx1; + Baxy; + o+ P,)
With x;; being a probability, the equation becomes:

logisticMix = Bo + ity ; + Paot + -+ + Lrty (5)
where:

tj; = logit(x;,;) (6)
The update formula for minimizing the relative e