

Interdisciplinary PhD school

PhD domain: Industrial Engineering

PhD THESYS

RESEARCH REGARDING THE ENERGY GENERATION FROM SOLID WASTE AND PLASTIC MATERIALS THROUGH THE DEVELOPMENT OF ALTERNATIVE FUELS

PhD student:

Chemist Marius Constantinescu

Scientific advisor:

Prof. univ. dr. Simona OANCEA

SIBIU 2020

CONTENTS	Pg. from PhD thesys	Pg. from PhD summary thesys
Summary	1	J
List of abbreviations	7	4
List of tables	10	
List of figures	13	
1. Introduction	16	7
2. Theoretical considerations regarding strategies for the energy recovery of	20	8
special waste		
2.1 Impact of waste on environmental quality	20	
2.2 Energy classification, characterization and recovery of waste	21	
2.2.1 Municipal and similar waste - sewage sludge, plastics	23	
2.2.1.1 Sewage sludge (SS) - general aspects, concept, recent studies at national and	23	
international level	22	
2.2.1.2 Plastics - general aspects, concept, recent national and international studies	32	
2.2.1.3 Industrial waste - siag	34	
2.2.1.4 Agro-zootechnical wastes - meat and bone meal (MBM)	37	
2.3 Transformation of waste by pyrolysis	39	
2.3.1. General considerations for pyrolysis	39	
2.5.2. Analysis of the application potential of pyrolysis to the recovery of plastic waste.	40	
2.4 Dibilography	48	
varieties based on purification sludge (SS), Meat and bone meal (MBM), Slag (Z) and Biomass (BW: BS)	05	
3.1 Materials used	66	
3.1.1 Sewage sludge (SS)	66	
3.1.2 Meat and bone meal (MBM)	66	
3.1.3 Slag (Z)	66	
3.1.4 Biomass (BS BW)	66	
3.2 Methods	67	
3.2.1 Gravimetric investigations	67	
3.2.1.1 Determination of moisture content (W)	67	
3.2.1.2 Determination of ash content (A)	71	
3.2.1.3 Determination of volatile matter content (V)	71	
3.2.2 Elementary analysis	72	
3.2.2.1 Combustion method + GC	72	
3.2.2.2 Pyrolysis method + GC	74	
3.2.3 Assessment of energy potential	76	
3.2.4 Determination of metal content	77	
3.2.5 Determination of the content of dioxins, furans and polycyclic aromatic hydrocarbons	77	
3.2.6 Isotopic investigation ${}^{14}C$. ${}^{12}C / {}^{13}C$ isotopic ratio	78	
3.2.7 Thermogravimetric analysis (TGA)	79	
3.3 Results and discussions	80	
3.3.1 Physico-chemical and energy characterization of waste raw materials (SS; MBM; Z; L; BW; BS) used to obtain innovative solid energy sorts (ESS)	80	
3.3.2 Achieving innovative solid energy sorts (ESS)	87	
3.2.2.1 Two component innovative solid energy sorts (ESS)	88	10
3.2.2.2 Three component innovative solid energy sorts (ESS)	91	12
3.2.2.2 Three component innovative solid energy sorts (ESS)3.3.3 Thermogravimetric analysis of the combustion profile of innovative solid energy	91 95	
sorts (ESS) 3.3.4 Morphological characterization of innovative solid energy sorts (ESS) by	101	
3.4 Experimental studies on the process of draing services sludge (SS)	102	
3.5 Practical and efficient way to capitalize on innovative solid energy sorts (ESS) by making pallets	102	14
3.6 Validation of the energy notential of FSS pellets	108	15
3.7 Partial conclusions	113	15

3.8 Bibliography	116	
4. Experimental research on the transformation of plastic waste by pyrolysis	120	17
4.1 Materials and methodology for determining the composition of pyrolysis products	124	
4.1.1 Materials used	124	
4.1.2 Investigation methods and equipment used	124	
4.1.3 Experimental pyrolysis plant	129	17
4.2 Results and discussions	133	
4.2.1 Physico-chemical characterization and thermal analysis of plastics	133	
4.2.2 Physical characteristics of developed plastic pyrolysis oils (PPO)	139	18
4.2.3 Physico-chemical and energy characterization of pyrolysis oils (PPO) developed	141	
from plastics		
4.2.4 FTIR characterization of pyrolytic oils (PPO) developed	146	
4.2.5 Heavy metal content of pyrolysis oils	149	20
4.2.6 Physical characteristics of developed plastic pyrolysis gas (PPG)	149	
4.2.7 Physico-chemical and energetic characteristics of PPG developed from	150	20
investigated plastics		
4.3 Bibliography	163	
5. Final conclusions, own contributions and future research directions	168	
Final conclusions	168	
Original contributions	171	24
Recommendations and future research directions	172	
List of publications resulting from doctoral research, published or accepted for	173	25
publication		

List of abbreviations

- A ash
- AAS atomic absorption spectroscopy
- AR4 fourth evaluation report
- AW animal waste
- BS beech sawdust biomass
- BW biomass vegetable waste (apricot kernels, grape waste)
- C carbon
- C₆H₅-COOH benzoic acid
- -CH₂ methylene
- -CH₃ methyl
- CH₄ methane
- CLU light liquid fuel
- CO carbon monoxide
- CO2 carbon dioxide
- CO_x carbon oxides
- EA elementary analysis
- ESS innovative solid energy sort
- ETBE third butyl ether
- EF emission factor
- FID detector with ionization flame
- FTIR Fourier transform infrared spectroscopy
- GC gas chromatography
- GC-FID gas chromatography with ionization flame detector
- GC-MS gas chromatography coupled with mass spectrometry
- GC-TCD gas chromatography with thermal conductivity detector
- GHG greenhouse gases
- GWP global warming potential
- H hydrogen
- H₂ hydrogen
- H₂O water
- H₂S hydrogen sulfide
- HDPE high density polyethylene
- HFO heavy fuel
- HPLC high performance liquid chromatography

L - lignite

- LDPE low density polyethylene
- LFO light fuel
- LPG liquefied petroleum gas
- MBM meat and bone meal
- MCM 41 mesoporous silica
- N nitrogen
- NH_3 ammonia
- NO nitrogen monoxide
- NO2 nitrogen dioxide
- NO_x nitrogen oxides
- O oxygen
- OW olive waste
- PAH polycyclic aromatic hydrocarbons
- PE polyethylene
- PET polyethylene terephthalate
- PM1.0 particles in suspension fraction 1 micron
- PM10 particles in suspension fraction 10 microns
- PM2.5 particles in suspension fraction 2.5 microns
- PP polypropylene
- PPG pyrolysis gas (gas from pyrolysis of plastics)
- PPO pyrolysis oil (plastic pyrolysis oil)
- PPPW experimental installation for pyrolysis of plastic samples
- PPW wax / pyrolysis residue (plastic pyrolysis wax)
- PS polystyrene
- PVC polyvinyl chloride
- Q_i superior calorific value
- Q_s higher calorific value
- S sulfur
- SAW pellets obtained from sewage sludge and animal waste
- SBA-15 mesoporous silica
- SEM scanning electron microscopy
- SFBR single fluidized bed reactor
- SM 5A molecular sieve
- SO₂ sulfur dioxide

SOW - pellets based on sewage sludge and olive waste

SO_x - sulfur oxides

SS - sewage sludge

SSMS - metal blocks of sandwich type catalyst support

T - temperature

t - time

TCD - thermal conductivity detector

TEC - equivalent total toxicity concentration

TEF - toxic equivalence factor

TGA - thermal gravimetric analysis

TSP - total powder in suspension

U.E. - European Union

V - volatile matter

 V_2O_5 - vanadium pentoxide

W - humidity

WHO - World Health Organization

WWTP - Wastewater Treatment Plant

Z - slag

ZSM-5 - zeolite

PhD thesis summary

1. Introduction

In recent years, through population growth, urbanization, accelerated industrialization, the amount of waste has normally increased exponentially. An essential element in sustainable development policy in the U.E. it is the exploration and efficient exploitation of resources that can generate raw materials for the development of renewable energy, a fact legislated by specific directives.

The sustainability of the research in this doctoral thesis is based on the need to create products - solid, liquid and gaseous - with high energy potential, innovative, relatively inexpensive, with a low footprint of NO_x, CO₂, SO_x emissions, starting from waste. Renewable energy technologies offer investment opportunities and represent workforce potential and can be the premise for energy security. At the moment, the use of waste for energy purposes is the new "El Dorado" in Europe and also in the USA, which means the huge potential in terms of financial benefits. The sustainability of resources is based on the exploration of existing local alternative sources, exploitable for the development of new fuels, alternatives to existing fossils. Through the solution adopted, for the use of new raw materials, respectively special solid waste: (*i*) sewage sludge from municipal wastewater treatment plants (SS); (*ii*) biomass / waste (pips, sawdust, grit, straw) (BS; BW); (*iii*) bone meal / mechanically boned meat / animal waste (MBM); (*iv*) slag - from the energy exploitation of coal, respectively lignite (Z); (*v*) plastic waste; having a mandatory feature - local traceability, it creates premises to achieve low costs for final products.

The main objective was to find sustainable and perfectly feasible processes for the return to the circular economy of the above-mentioned waste as raw materials. The exchange, initially utopian, respectively elimination *vs* energy recovery, could be demonstrated in this doctoral thesis by technological processes used for several decades, combustion and pyrolysis, but brought in an updated and targeted form on the energy mixtures developed.

2. Original contributions on the production and energy recovery of solid sorts based on sewage sludge (SS), meat and bone meal (MBM), slag (Z) and biomass (BW; BS)

The present study aimed to overlap and correlate several topical issues: (*i*) sustainability of resources, (*ii*) environmental protection, (*iii*) elimination through recovery - complementary themes, with the stated aim of developing innovative solid energy sorts (ESS), assimilated to alternative fuels, starting from the combination of wastes such as sewage sludge (SS), meat and bone meal (MBM), slag (Z) and biomass (BW; BS).

Table 1 presents the results on the moisture content (W), ash (A), volatiles matter (V) and chemicals elements C, N, H, S / O for waste raw materials (SS; MBM; Z; BW; BS), chosen in this study.

Table 1. Physico-chemical and energy characterization of waste raw materials (SS; MBM; Z; BW; BS) compared to lignite (L)

Determinations	L	SS	MBM	Z	BW	BS
W _t ⁱ (%)	$37,21 \pm 4,50$	$77,90 \pm 9,42$	$18,52 \pm 2,24$	39,76 ± 4,81	$1,\!48 \pm 0,\!18$	$1,\!48 \pm 0,\!18$
A ⁱ (%)	$28{,}20\pm0{,}85$	$44,51 \pm 1,34$	$6{,}49 \pm 0{,}19$	$80,77 \pm 2,42$	$13,\!86\pm0,\!56$	$2,\!13\pm0,\!06$
V ⁱ (%)	$21,06 \pm 0,63$	$51,\!13\pm1,\!02$	$81,\!43 \pm 2,\!44$	$10{,}59\pm0{,}32$	$82,\!48 \pm 2,\!24$	$78,\!79\pm2,\!36$
C ^a (%)	$21,\!29\pm0,\!61$	$26,\!44 \pm 0,\!76$	$28,\!95\pm0,\!83$	$15,56 \pm 0,45$	$0,\!34\pm0,\!01$	$49,68 \pm 1,43$
N ^a (%)	$1,53 \pm 0,05$	$4,\!62 \pm 0,\!15$	$11,\!09\pm0,\!37$	$0,26\pm0,01$	$5{,}50 \pm 0{,}58$	$1,\!42 \pm 0,\!05$
H ^a (%)	$2,06 \pm 0,05$	$4,04 \pm 0,10$	$6{,}34 \pm 0{,}16$	$0{,}52\pm0{,}02$	< 0,005	$6,\!42 \pm 0,\!16$
S ^a (%)	$0,\!45 \pm 0,\!03$	$0,\!65\pm0,\!04$	$8,\!88\pm0,\!50$	$0,\!34\pm0,\!02$	$36{,}60\pm0{,}78$	< 0,005
O ^a (%)	$9,24 \pm 0,18$	$19,52 \pm 1,79$	$38,25 \pm 1,10$	$2,55 \pm 0,06$	$3,\!66 \pm 0,\!06$	$36,60 \pm 1,10$
FC ^a (%)	$50{,}74 \pm 1{,}52$	$4,\!36\pm0,\!09$	$12{,}08\pm0{,}36$	$8{,}64 \pm 0{,}26$	$44,00 \pm 5,41$	$19{,}08 \pm 0{,}57$
Q_s^a (kcal / kg)	2086 ± 25	2915 ± 35	3730 ± 45	971 ± 12	4044 ± 51	4813 ± 58
$Q_i^a (kcal / kg)$	1700 ± 20	2698 ± 32	3400 ± 41	800 ± 10	3691 ± 55	4591 ± 55
EF(kg/GJt/TJ)	94,12	83,62	71,55	-	0,00	0,00

Note: i - initial state; a - analysis state

The highest ash content (A) in the slag (Z) was predictable, this being a residual product resulting from the combustion of lignite. Also, the high level of ash (A) is found in the sewage sludge (SS) samples. Lignite, waste biomass (BW) and beech sawdust (BS) show ash levels (A) within limits comparable to those in the literature in the case of such matrices.

In the case of volatile matter content (V), the results were spectacular due to the proven potential of alternative fuels. The samples of sewage sludge (SS) and meat and bone meal (MBM) recorded high levels of volatile matters, compared to those of lignite, a fossil fuel used regularly in the boilers of power plants in southwestern Romania. If in the case of beech sawdust (BS), known as an alternative fuel, with proven high energy potential, in the

case of waste-type biomass, respectively apricot kernels (BW), but also grape residues (BW), the results of energy tests have generated higher values than those reported in the literature.

By developing a solar dryer, Figure 1, the doctoral study demonstrated the possibility of using sewage sludge (SS) by combustion in the form of pellets, for a high efficiency of a material considered by modern society as waste.

Figure 1. Solar dryer with moisture extractor, designed and used in experimental testing

The dryer, according to the invention, consists of a lower inner support element (i) for the components to be dried, of concave shape, which concentrates the sun's rays, and (ii) a solar concentrator, formed of an upper covering structure, dome-shaped, transparent, semicircular inclined, having a paraboloid shape with different diameters at the ends, compared to the middle section, together with which it forms a closed cavity, from which the resulting water vapor is extracted by static diffusion at the top with by means of a (iii) connecting tube, and are discharged by natural or forced condensation by means of a (iv) element with metal fins, and by the possibility of free or forced cooling with a (v) Peltier type element, equipped with a (vi) glossy, umbrella-shaped covers, the condensate being discharged from the condensing chamber through a (vii) tube operating on the principle of communicating vessels and hydrostatic pressure. The QT and TT elements are used for the measurement and quantitative verification of humidity, but also of the gas concentration resulting during the drying operation under the influence of sunlight, the component elements of the installation being arranged in a certain sequence and configuration, forming a closed enclosure allow the human operator to accelerate the extraction of moisture as well as to follow the operating parameters, including the content and composition of the gases released during the drying process.

Also, the study on slag (Z) resulting from the combustion of lignite and in the innovative tricomponent mixture developed with lignite, Table 2, but also with a special type of biomass, meat and bone meal (MBM), contributed to the validation of the process of elimination of some waste with negative effects on the environment, quality of life in general, through combustion processes, perfectly feasible in high-capacity boilers of Romanian CHPs, without the risk of developing toxic chemicals, such as dioxins and furans, respectively polycyclic aromatic hydrocarbons (PAH).

Mixture type			Mass	Mixture code				
	SS	L	BS	Ζ	MBM	BW	BS	
	30	70						ESS _{SS+L} (I)
	50	50						ESSss+L (II)
	70	30						ESSss+L (III)
two	30		70					ESS _{SS+BS} (I)
components	50		50					ESSss+bs (II)
	70		30		_			ESSss+bs (II)
	25	50		25				ESSss+L+Z (I)
	50	25		25				ESS _{SS+L+Z} (II)
	25	25		50				ESSss+L+z (III)
		50		25	25			ESSMBM+L+Z (I)
		25		25	50			ESSMBM+L+Z (II)
		25		50	25			ESSMBM+L+Z (III)
three		25			25	50		ESSMBM+BW+L (I)
components		25			50	25		ESS _{MBM+BW+L} (II)
		50			25	25		ESS _{MBM+BW+L} (III)
		50		25			25	ESSBS+L+Z (I)
		25		25			50	ESSBS+L+Z (II)
		25		50			25	ESSBS+L+Z (III)

 Table 2. Types of innovative solid energy sorts (ESS) developed

2.1 Two-component innovative solid energy sorts (ESS)

 Table 3 shows the average values of the elemental chemical composition of the two

 component innovative solid energy sorts (ESS) developed.

Table 3. Characteristics of two-component innovative solid energy sorts (ESS)

Parameters	Type of two-component ESS sorts								
investigated	ESSss+L (I)	ESSss+L (II)	ESS _{SS+L} (III)	ESSss+bs (I)	ESSss+bs (II)	ESSss+bs (III)			
C ^a (%)	$30,11 \pm 0,86$	$28,\!85\pm0,\!83$	$27,\!14\pm0,\!78$	$40,12 \pm 1,15$	$33,91 \pm 0,97$	$30,\!76\pm0,\!88$			
N ^a (%)	$1,82 \pm 0,06$	$2,28 \pm 0,08$	$3,07 \pm 0,10$	$1,08 \pm 0,04$	$2,59 \pm 0,09$	$2,97 \pm 0,01$			
H ^a (%)	$3,61 \pm 0,09$	$3,72 \pm 0,09$	$3,92 \pm 0,10$	$5,14 \pm 0,13$	$4,\!67 \pm 0,\!12$	$4,43 \pm 0,11$			
S ^a (%)	$1,\!09\pm0,\!06$	$1,\!15\pm0,\!06$	$1,\!02\pm0,\!06$	$0,26\pm0,01$	$0{,}50\pm0{,}03$	$0,\!67\pm0,\!04$			
O ^a (%)	$22,\!29 \pm 0,\!44$	$23,\!24 \pm 0,\!46$	$24{,}78\pm0{,}50$	$39,17 \pm 0,78$	$37,\!18 \pm 0,\!74$	$32,34 \pm 0,65$			
FC ^a (%)	17,47	36,99	10,99	13,73	13,51	10,29			
Q_s^a (kcal / kg)	3019 ± 36	2916 ± 35	$2814 \pm 0{,}33$	3807 ± 46	3499 ± 42	3200 ± 38			
$Q_i^a (kcal / kg)$	2566 ± 31	2479 ± 30	2392 ± 29	3510 ± 42	3223 ± 39	2982 ± 36			
EF(kg/GJt/TJ)	91,942	91,206	88,91	97,15	89,341	88,614			

In the literature there are studies on the realization of energy mixtures based on sewage sludge (SS) + coal, sewage sludge (SS) + biomass (sawdust, aquatic plants, mushrooms), in compositional proportions of 0 %; 3 %; 5 %; 10 %; 20 %; 30 % for SS: coal, respectively 0 %; 25 %; 50 %; 75 %; 100 % for SS: biomass, which are different compared to those developed in this study, $\mathbf{I} - 30 \% + 70 \%$; $\mathbf{II} - 50 \% + 50 \%$; $\mathbf{III} - 70 \% + 30\%$.

Following the investigations, the results of the sulfur content showed that both the waste raw materials (SS; BS) chosen for the study and the two-component innovative solid energy sorts (ESS) developed fall within value thresholds of ~ 1 %.

Regarding the nitrogen (N) content, it should be emphasized that the sewage sludge (SS) has been used in the past as compost and fertilizer, precisely because of the high content of this element, in addition to the high content of phosphorus (P) and potassium (K). The nitrogen content of ~ 4.62 % present in sewage sludge (SS) and ~ 1.53 % in lignite varied in the developed two-component innovative solid energy sorts (ESS), as follows: 1.08 % for ESSss + BS (I) and 3.07 % respectively for ESSss + L (III), which represents a progress in reducing its level, respectively of nitrogen oxides (NO_x) resulting from combustion. In the cases recorded by the literature in which a coal with a higher nitrogen level, N ~ 2 %, was used, it was also reflected in the final concentration of the developed energy mixtures.

The carbon content (C) can provide important information not only about the energy potential of the investigated materials, but also about the potential emissions of CO_2 , GHG, responsible for the global greenhouse effect - Global warming, through the future combustion of innovative solid energy sorts (ESS). The energy potential of waste raw materials (SS; BS) selected in this study, can increase through the proposed energy sorts, without negatively affecting the environment through the level of emissions developed in combustion processes.

After removing the water from the samples by drying in special ovens followed by cutting, grinding and sieving operations at a specified specific granulation, their combustion potential was investigated by determining the higher calorific value (Qs) and lower calorific value (Qi) using the calorimetric method. The values obtained are high in terms of combustion, especially for the ESSss + Bs (I; II; III) sorts. Compared to the value of the superior calorific value of the sewage sludge (Qs = 2915 kcal / kg), respectively of the lignite (Qs = 2100 kcal / kg), the innovative solid energy sorts (ESS) demonstrated values of the superior calorific value between 2814 kcal / kg ESSss + L (III) and 3807 kcal / kg ESSss + Bs (I), which is a feasible solution for the disposal of solid waste with energy recovery.

The literature specifies the following energy values for energy sorts developed from sewage sludge (SS) and biomass, respectively aquatic plants, (*i*) SS + water hyacinth, Qs ~ 2521-2785 kcal / kg and (*ii*) SS + sedge, Qs ~ 2774-3362 kcal / kg. Also, in the case of energy sorts based on sewage sludge (SS) and coal, the literature indicates Qs values, respectively 1931-3852 kcal / kg, using a coal type coal (Qs = 6128 kcal / kg). Although for the innovative solid energy sorts (ESS) based on lignite ESSss + L (I; II; III) developed in this study, the energy values are close to those in the study in which another type of coal, coal was used, the difference is in the ratio of waste components used in energy sorts, to the advantage of ESS.

2.2 Innovative three-component solid energy sorts (ESS)

In the literature no data were identified regarding the development of energy mixtures with three components of waste raw materials. Consequently, the design and development of three-component innovative solid energy sorts (ESS) in this doctoral study is a novelty.

Tables 4-5 present the average values of the elementary chemical composition of the innovative three-component solid energy sorts (ESS) developed and tested in the present doctoral study.

Parameters			Type of three-co	mponent ESS sor	ts	
investigated	ESS _{MBM+L+Z}	ESS _{MBM+L+Z}	ESS _{MBM+L+Z}	ESSMBM+BW+L	ESS _{MBM+BW+L}	ESSMBM+BW+L
	(I)	(II)	(III)	(I)	(II)	(III)
C ^a (%)	$25,32 \pm 0,40$	$26,91 \pm 0,36$	$22,31 \pm 0,34$	$32,66 \pm 0,46$	$34,99 \pm 0,46$	$34,22 \pm 0,51$
N ^a (%)	$3,22 \pm 0,17$	$5{,}10\pm0{,}55$	$2,94 \pm 0,51$	$3,\!44 \pm 0,\!69$	$6,20 \pm 0,94$	$5,51 \pm 0,02$
H ^a (%)	$3,78 \pm 0,42$	$4,40 \pm 0,49$	$2,98 \pm 0,44$	$4,77 \pm 0,86$	$5,59 \pm 0,51$	$5,\!61 \pm 0,\!47$
S ^a (%)	$2,20 \pm 0,55$	$2,00 \pm 0,46$	$2,00 \pm 0,30$	$2,16 \pm 0,34$	$3,80 \pm 0,67$	$4,96 \pm 0,76$
O ^a (%)	$18,06 \pm 0,73$	$14,84 \pm 0,77$	$14,84 \pm 0,64$	$28,47 \pm 0,94$	$32,36 \pm 1,00$	$34,05 \pm 0,98$
FC ^a (%)	$13,\!42 \pm 0,\!11$	$12,14 \pm 0,17$	$11,46 \pm 0,19$	$15,\!28\pm0,\!12$	$15,\!18\pm0,\!21$	$17,\!08 \pm 0,\!18$
$Q_{s^{a}}(kcal/kg)$	2493 ± 30	2791 ± 33	2162 ± 26	3412 ± 41	3759 ± 45	3982 ± 48
Q_i^a (kcal/kg)	2120 ± 25	2433 ± 29	1876 ± 23	3129 ± 38	3444 ± 41	3600 ± 43
EF(kg/GJ t/TJ)	93,628	88,883	95,128	56,223	98,123	67,277

Table 4. Physico-chemical and energetic characteristics of the innovative solid energy sorts of three-component ESS

Note: (*a*) - *state of analysis*

Parameters		Type of three-component ESS sorts								
investigated	ESS _{BS+L+Z}	ESS _{BS+L+Z}	ESS _{BS+L+Z}	ESS _{SS+L+Z}	ESS _{SS+L+Z}	ESS _{SS+L+Z}				
	(I)	(II)	(III)	(I)	(II)	(III)				
C ^a (%)	$27,31 \pm 0,78$	$33,\!46 \pm 0,\!96$	$24,12 \pm 0,69$	$23,90 \pm 0,69$	$24,06 \pm 0,69$	$20,44 \pm 0,59$				
N ^a (%)	$0,89 \pm 0,03$	$0,77 \pm 0,03$	$0,72 \pm 0,02$	$1{,}68 \pm 0{,}06$	$2,66 \pm 0,09$	$1,\!67 \pm 0,\!06$				
Ha (%)	$3,30 \pm 0,08$	$4,07 \pm 0,10$	$2,65 \pm 0,07$	$3{,}00\pm0{,}08$	$3,50 \pm 0,12$	$2,80 \pm 0,07$				
S ^a (%)	$0,35 \pm 0,02$	$0,\!18 \pm 0,\!01$	$0,16 \pm 0,01$	$0,79 \pm 0,04$	$0,40 \pm 0,02$	$0,24 \pm 0,01$				
O ^a (%)	$21,73 \pm 0,43$	$29,74 \pm 0,59$	$18,55 \pm 0,37$	$13,70 \pm 0,27$	$14,73 \pm 0,29$	$10,59 \pm 0,21$				
FC ^a (%)	13,73	13,51	10,29	10,83	8,87	10,39				
$Q_{s}^{a}(kcal/kg)$	$2673 \pm 0,16$	3219 ± 39	2403 ± 29	2299 ± 28	2410 ± 29	1936 ± 23				
Q_i^a (kcal/kg)	2323 ± 28	2951 ± 35	2189 ± 26	1978 ± 24	2122 ± 25	1660 ± 20				
EF(kg/GJ t/TJ)	94,486	95,823	92,531	95,835	92,033	97,328				

Table 5. Physico-chemical and energetic characteristics of the innovative solid energy sorts of three-component ESS

Note: (a) - state of analysis

The three-component innovative solid energy sorts (ESS) consisting of meat and bone meal (MBM), ESS_{MBM + L} + z, respectively ESS_{MBM + BW + L}, are sorts with a high energy level, Qs = 2483-3982 kcal / kg. The high level of sulfur (S), is a characteristic of the sorts that have in their composition meat and bone meal (MBM), due to the sulfur aminoacids present. This phenomenon is also reported in other studies, and a solution to correct SO₂ emissions would be to include a sustainable adsorbent, such as limestone.

In the present study, slag (Z) was used in three-component sorts with lignite, meat and bone meal (MBM) or sewage sludge (SS), biomass waste (BS), in different mass proportions. Low levels of nitrogen (N) (0.72-3.44%) and sulfur (S) (0.16-2.16%) in slag (Z), correlated with the appreciable level of carbon (C) (~ 24 -33%), for a waste raw material resulting from a combustion, are factors of interest for the introduction into the energy circuit, in energy sorts with other waste raw materials. All innovative solid energy sorts (ESS) developed on the basis of slag (Z) revealed a high level of calorific value, some at the same level or even higher compared to that of lignite, respectively Qs = 1936-3412 kcal / kg vs. 2086 kcal / kg fossil fuel used in the boilers of thermal power plants in the South-West of Romania, respectively CET Govora, CET Turceni, CET Işalniţa, CET Rovinari.

Sewage sludge (SS) used in a single combination of tricomponent innovative solid energy sort ESSss + L + z, together with lignite and slag (Z), at different mass concentrations (I; II; III), offers a new perspective, of the method of disposal of this waste raw material by energy recovery, exclusively through the combustion process. With varying energy values, Qs of ESSss + L + z (I; II; III) with values between 1936 kcal / kg and 3412 kcal / kg, compared to those of lignite Qs of 2086 kcal / kg and sewage sludge (SS) Qs of 2915 kcal / kg, sorts based on sewage sludge (SS) are energetically solid sorts and due to the high content of volatile matters (V) ESSss + \mathbf{L} + \mathbf{z} (I; II; III): 25,35-56,22 %, but also environmentally friendly, with nitrogen levels (N) ESSss + \mathbf{L} + \mathbf{z} (I; II; III) of 1.67-3.44 % and sulfur (S) ESSss + \mathbf{L} + \mathbf{z} (I; II; III) of 0.24-2.16 %.

2.3 Practical and efficient way to capitalize on innovative solid energy sorts (ESS) by making pellets

For a better research of the behavior of the innovative solid energy sorts (ESS) developed in this study, the best simulation is the real representation in the form of a pellet or a lighter. In a first stage, the exclusive pelletization of the sewage sludge (SS) was carried out, dried, ground, homogenized and subjected to the sieving process up to $\emptyset < 200 \ \mu\text{m}$. In this study were also developed pellets from a mixture of sawdust and sewage sludge, ESSss + BS (II) shown in Figure 2, respectively lignite and sewage sludge, ESSss + BS (II).

Figure 2. Pellets from sewage sludge + beech sawdust ESSss + BS (II)

Processed waste in the form of pellets allows its storage without leading to secondary environmental pollution. In addition, this shape facilitates transport, increasing their potential for use.

By performing tests for the physical properties on the developed skins, presented in Table 6, it is considered that they can be subjected to the operations of mechanical handling, transport, loading, unloading, in safe conditions.

Properties	Peletts ESSss	Peletts ESSss + BS (II)	Peletts ESSss + L (II)
color	black	ash	gray
smell	specific	specific	specific
surface	smooth	smooth	smooth
additive / binder	missing / without	missing / without	missing / without
compressive strength (kN)	~ 4,596	~ 4,800	~ 5,500
moisture content W (%)	~ 15	~ 15	~ 15
ash content A (%)	~ 44	~ 21	~ 40
lower energy value Q _i (kcal/kg)	~ 2540	~ 3300	~ 2500
diameter D (mm)	~ 5	~ 5	~ 5
length L (mm)	> 30	> 30	> 30
sulfur S (%)	~ 0,5	~ 0,5	~ 1
nitrogen N (%)	~ 4	~ 2	~ 1
volatile matter content V (%)	~ 50	~ 65	~ 25
density ρ (<i>kg/m³</i>)	~ 1,2	~ 1,3	~ 1,0

Table 6. Technical and physico-chemical characteristics of the pellets developed from the innovative solid energy sorts (ESS)

2.4 Validation of the energy potential of ESS pellets

Waste processed in the form of pellets allows its storage without leading to secondary environmental pollution. In addition, this shape facilitates transport, increasing their potential for use. To validate the energy potential of the pellets developed in this study, their combustion tests were performed, Figure 3.

Figure 1. Flow diagram on waste recovery by pelletizing and combustion

Combustion of sewage sludge (SS), meat and bone meal (MBM), slag (Z) from the combustion of lignite, alone and / or in mixtures with lignite coal or beech sawdust biomass (BS), or waste biomass of plant origin (BW) - combines a number of advantages, which include a large reduction in the huge volume of ever-increasing waste.

The combustion characteristics of alternative fuels studied by thermogravimetric analysis and gas composition analysis by gas chromatography, respectively elemental analysis, but also by calorimetric investigations, showed a solid behavior, sustainable waste management through innovative solid energy sorts (ESS) developed. The combustion of innovative solid energy sorts (ESS) developed from the selected waste results in a good and promising alternative for the correct management of current resources, but also of waste, from disposal to energy recovery, respectively by:

(*i*) drying the selected waste in the solar dryer designed in this study, up to a humidity W < 15 %;

(ii) the higher calorific value (Qs) obtained, with values between 2500 kcal / kg and 4000 kcal / kg vs. 2200 kcal / kg resulting from lignite;

(iii) the values of gaseous emissions and the content of total dust generated by the combustion of pellets based on sewage sludge (SS), which are lower compared to the values of attention contained in Order no. 756 of November 26, 2004;

(*iv*) the total equivalent toxic concentration (TEC) of 0,48765 ng / kg, which is lower than that set for the cleaning level of 13 ng / kg;

(v) the sum of the metal content of the gaseous emissions resulting from the combustion of ESS, of 244.23 μ g / kg, being lower than the one provided by Order no. 756/2004, of 500 μ g / kg;

(vi) the potential use of combustion ash (SS_{ASH}) in construction materials.

3. Experimental research on the pyrolysis transformation of plastic waste

This doctoral study investigated from a thermochemical point of view the potential of several types of polymeric materials, polyethylene PE (HDPE and LDPE), polypropylene PP and polystyrene PS. The choice of these polymeric materials was based on the fact that they are "responsible" for > 90 % of the total plastic products worldwide, respectively for plastic waste.

In this study we proposed pyrolysis as a waste disposal process.

Pyrolysis is a process of chemical decomposition that takes place in an atmosphere without oxygen. Pyrolysis involves the fragmentation of polymers in an inert medium using reducing and oxidizing agents, in the presence or absence of a catalyst, at relatively high temperatures and atmospheric pressure. During this thermochemical process, chemical reactions of (*i*) hydrogenation, (*ii*) dehydrogenation, (*iii*) cracking, (*iv*) aromatization, (*v*) cyclization take place, finally new molecules developing. The complex pyrolysis process leads to the thermal decomposition of solid polymeric matrices into reaction products in three aggregation states: (*i*) solid - residue / wax; (*ii*) liquid - rich in hydrocarbons / condensed gases; (*iiii*) gas - rich in hydrocarbons and other non - condensable gases.

3.1 Experimental pyrolysis plant

The pyrolysis plant has the following technological structure: (*i*) reactor - made of refractory steel, with H = 500 mm and Dint = 100 mm; (*ii*) reactor insulation made with basalt wool in a layer of 1 = 50 mm; (*iii*) metal condenser made of copper - cooling system / uncondensed gases with L = 500 mm; (*iv*) metal condenser cooling provided with water at T < 10 ° C; (*v*) glass - Erlenmeyer flask / condensable hydrocarbon collection / PPO type oil; (*vi*) bag of special material that does not allow the diffusion of non-condensable gases, V = 5 L Tedlar (CEL Scientific Corporation) for the collection of non-condensable gases, PPG type gas.

The development and validation through this study of alternative fuels such as pyrolysis oils - PPO, respectively pyrolysis gas - PPG, created the premises for sustainable waste management. The high energy value of the reaction products resulting from the studied pyrolysis processes was facilitated by the innovative structure of a developed reactor, which was the subject of a national patent granted by OSIM, Figure 4, used at lower temperatures compared to those presented in specialty literature.

3.2 Physico-chemical and energetic characterization of pyrolysis oils (PPO) developed from plastics

Higher calorific value (Qs) determined following catalytic or non-catalytic pyrolysis processes, in the case of PP indicates values between 40.59 MJ/kg (PPOPP + MCM41 450) and 44.95 MJ/kg (PPOPP 350), the results being superior or similar to those in the literature for plastic waste made of the same type of polymer, PP, respectively: 40.80 MJ/kg, 44.37 MJ/kg, or 41.15 MJ/kg.

For the pyrolytic oils obtained as a result of the complex pyrolysis processes of PS, high energy values were recorded, slightly below those in the literature, Qs = 43 MJ/kg and 43.94 MJ/kg.

According to data from the literature, the pyrolysis process at 500 ° C performed with a reactor similar to that used in the present study, but in which the catalyst method was used mixed with plastic waste, in a mass ratio of 1:3, led to the following results: the value of the higher calorific value Qs = 42.12 MJ/kg for the pyrolytic oil of LDPE and of 43.19 MJ/kg for the pyrolytic oil of HDPE. Comparatively, in this doctoral study, at the catalytic mass: plastic ratio of 1:10, at a temperature of 450 °C, the values of higher calorific value varied from Qs =

42.94 MJ/kg in the catalytic process with MCM- 41 at Qs = 44.30 MJ/kg in the catalytic process with Zeolite. In another study, the HDPE polymer subjected to a process of non-catalytic pyrolysis at T > 475 °C led to a higher calorific value Qs = 41.15 MJ/kg, compared to the pyrolytic oil PPO_{HDPE 450}, obtained in this doctoral study by non-catalytic pyrolysis with a much higher calorific value, of Qs = 44.50 MJ/kg.

The physical properties of the pyrolytic oils (PPO) obtained are shown in Table 7.

Turna of numelartia oil	Observations and abusing dependencies
Type of pyrolytic off	Observations and physical characteristics
	color - yellow, greenish
	appearance - oily, viscous
PPO _{HDPE 450}	inflammable
	odor - strong hydrocarbons / specific for conventional liquid fuels
	density at 25 °C = 7595 g/ cm ³
	color - yellow, greenish
	appearance - oily, viscous
PPO _{LDPE 450}	inflammable
	odor - strong hydrocarbons / specific for conventional liquid fuels
	density at 25 °C = 7478 g/ cm ³
	color - yellow
	aspect - oily
PPO _{PP 450}	inflammable
	odor - strong hydrocarbons / specific for conventional liquid fuels
	density at $25 \text{ °C} = 7606 \text{ g/ cm}^3$
	color - red, brown
	appearance - viscous / semi-solid
	inflammable
PPOps 450	odor - strong hydrocarbons / specific for classic liquid fuels + styrene
- 10 - 10	density at 25 °C = 9139 / cm^3
	ETBE - 2 19 %

Table 7. Physical characteristics of oils resulting from the pyrolysis of plastics at 450 °C

The S content of all samples is below the limit of quantification of the investigation method, respectively LOQ = 0.005 %. In this sense, the possibility of forming compounds with S content, respectively H₂S, SO_x, is very low, which makes the pyrolytic oil (PPO) to be environmentally friendly.

Also, the nitrogen (N) content is very low, being slightly influenced by the presence of the catalyst. On the other hand, the highest carbon content was 88.13 % recorded for PPO obtained from PS (PPOPs MCM-41), influenced by the MCM-41 catalyst. Also, the highest Qs was determined for PPO based on LDPE polymer (PPOLDPE + Zeolite 450), being 45.36 MJ/kg.

3.3 Heavy metal content of pyrolysis oils

Determining the heavy metal content of pyrolytic oils developed in this study of pyrolysis of plastics based on PP, HDPE, LDPE and PS provides important information to assess the impact on the environment, but also to compare them with levels of conventional liquid fossil fuels. The results of the heavy metal content of PPO developed in relation to the levels of conventional liquid fuels are presented in Table 8.

 Table 8. PPO heavy metal content of the polymers investigated compared to that of conventional fuels

Fuel type	Cd	Pb	Cr	Mn	Co	Ni	Cu	As	Se	Hg	Rb	Sr
	(µg/ l)											
PPO _{PP450}	0,12	0,09	1,97	0,29	0,21	0,56	0,06	0,37	1,61	< 0,01	0,17	0,06
PPO _{HDPE 450}	0,34	0,53	2,49	8,11	1,39	3,83	2,31	0,17	1,72	< 0,01	0,01	0,72
PPOLDPE 450	0,05	0,06	3,11	0,01	0,07	4,56	1,75	0,35	2,40	< 0,01	0,21	0,05
PPO _{PS450}	0,07	0,07	10,03	0,37	0,16	0,02	0,27	0,30	2,12	< 0,01	0,22	0,15
Diesel fuel	15,00	10,10	8,60	-	-	-	17,70	-	-	-	-	-
Kerosene	13,30	4,10	3,30	-	-	-	19,80	-	-	-	-	-
Benzine	16,80	2,40	5,40	-	-	-	17,40	-	-	0,77	-	-

3.4 Physico-chemical and energetic characteristics of PPG developed from investigated plastics

The composition of PPG gas resulting from HDPE is influenced by the use of SMMS / catalysts. HDPE - mixture of polyethylene and polypropylene, but also of other hydrocarbons, during the pyrolysis process makes the transition from solid to gaseous state with a rich content in hydrocarbons, but also in hydrogen H₂, which gives the resulting gas an important energy intake, especially in catalytic pyrolysis processes, respectively with SBA-15 or MCM-41, H₂ being 5.16-5.70 %, compared to the initial concentration of ~ 2 %. According to the obtained results, the PPG gases obtained as a result of the pyrolysis processes of the HDPE polymer, in different technical conditions, the temperature of 350 °C, but also the absence of catalysts, determine a higher calorific value of $Qs = 102.75 \text{ MJ/m}^3$, followed by PPG_{HDPE} at T = 450 °C, in the absence of catalysts, with $Qs = 106.46 \text{ MJ/m}^3$. Although there are obvious changes in the PPG compositional structure following the catalytic pyrolysis processes, a higher energy value is observed in the case of LDPE-based PPG pyrolytic gases obtained in the absence of catalysts, for PPGLDPE 450, the Qs value being 121.18 MJ/m³, and for PPGLDPE 350 Qs of 109.97 MJ/m³. Polypropylene subjected to the pyrolysis process at 450 °C, without catalysts, showed at the end a PPG_{PP} $_{450}$ - gas mixture rich in hydrocarbons, with a content > 43 % propylene, other alkanes and alkenes, but also free H₂. The results show that PPG_{PP} have a varied content in CO, CO₂, because even if the pyrolysis reaction takes place in the absence of oxygen, the carbon in the polymer structure reacts with intramolecular oxygen, possibly by the addition of dyes or other curing agents or elasticity. Methane undergoes major changes in concentration, from ~ 6.6 % in the case of PPG_{PP 450} to ~ 18 % under the catalytic action of Lignite (lignin) and MCM-41, respectively to ~ 13 % in the presence of SBA-15. The variable content of PP concentration, which decreases from ~ 43 % to ~ 36-39 %, also led to a decrease in energy values from 99.45 MJ/m³ for PPGpp 450 to 80.86 MJ/m³ for PPGpp SBA15, respectively 84.84 MJ/m³ in the case of PPGpp MCM41. A generally valid feature for pyrolysis processes is that the future composition of the resulting gas depends in proportion > 80 % on the initial structure of the solid / liquid material subjected to the thermal degradation activity. Thus, the composition of PPG gas depends on the composition of the tested polymer, styrene and toluene being the main components identified by GC analysis in PPGPs type gases. From the obtained data it can be seen how under the action of the cracking reaction during the pyrolysis process, but also of the catalysts, Zeolite, Lignite, SBA-15 and MCM-41, for toluene, the basic element of polystyrene PS, the benzene cycle undergoes a process of "breaking", and a large part of the C and H content migrates to ethylene, and to a small extent to free H₂. This technical example is confirmed by changing the concentration level, initially from $H_2 = 0.57$ % in the case of PPG_{PS} 450, to 2 % in the case of PPG_{PS} 450 ZEOLITE, PPG_{PS} 450 LIGNITE, PPGPs 450 SBA15. An enrichment of the styrene concentration level was found in all cases of PPG obtained under catalytic action. For PPGs obtained from catalytic and noncatalytic pyrolysis experiments, a number of physical properties similar to those of classical gaseous hydrocarbons were identified. The results are presented in Table 9.

PPG type	Physical observations
	color - whitish
PPG _{HDPE 450}	appearance - viscous
	very flammable
	odor - hydrocarbons / specific for classic liquid fuels
	color - whitish
PPGLDPE 450	appearance - viscous
	very flammable
	odor - hydrocarbons / specific for classic liquid fuels
	color - colorless
PPG _{PP 450}	appearance - viscous
	very flammable
	odor - strong hydrocarbons, specific for conventional liquid fuels
	color - mixture of white and gray
PPG _{PS 450}	appearance - viscous
	very flammable
	odor - a mixture of styrene and gasoline

Table 1. Physical properties of PPG resulting from the pyrolysis of plastics

The results obtained on the developed alternative fuels, PPO and PPG, following complex investigations using modern methods such as EA, calorimetry, ATR-FTIR, GC-FID, GC-TCD, GC-MS, AAS and TGA, can be summarized as follows:

(i) the developed pyrolytic oils (PPOs) showed a high and varied level of chemicals considered combustible, respectively for H, O and C;

(*ii*) the developed pyrolytic oils (PPO) confirmed a high energy potential, with values Qs ~ $39.5-45.5 \text{ MJ} / \text{m}^3$, comparable to those of conventional or alternative liquid fuels, used on the world profile market;

(*iii*) the developed pyrolytic gases (PPG) are characterized by the lack of sulfur compounds, specific to natural gas or biogas, respectively H_2S , SO_2 , which is another important quality, namely that in relation to environmental protection;

(*iv*) the developed pyrolytic gases (PPG) are characterized by a lack of nitrogen compound content, which limits NO_x and zero oxide emissions, respectively;

(v) the developed pyrolytic gases (PPG) have proven energy values comparable to any gaseous fuel, both conventional and alternative, with Qs values of 80-110 MJ/m³ vs. 42 MJ/m³ for natural gas (NG);

(vi) the use of catalysts in sandwich steel blocks, SMMS, in catalytic pyrolytic processes, has brought economic efficiency, their recovery for other such experiments, with a yield $\eta \sim 50$ %;

(*vii*) the use of the SMMS catalytic system did not result in higher energy values of PPG compared to the non-catalytic process, instead it led to a significant reduction in the amounts of greenhouse gases, respectively CO_2 and CO, at a level < 100 ppm;

(*viii*) by burning alternative fuels developed in this study, respectively PPO and PPG, no chlorine emissions will be generated, because the polymers investigated, PP, PS, HDPE and LDPE do not contain chlorine following the EA type investigations performed;

(*ix*) carcinogenic heavy metal content determined from PPO vs. liquid classic fuels, is at least an order of magnitude smaller; thus, for Pb the content was between 0.07 μ g/l and 0.53 μ g/l (PPOHDPE) vs. 2.4-10.10 μ g/l (diesel);

(x) the presence of tert-butyl ether (ETBE) has been identified in the developed PPO_{PS} 450;

(*xi*) the level of PPW waste resulting from the pyrolysis of the polymers studied is relatively low < 10 % compared to the total amount of sample entering the experiment;

(*xii*) as regards the physical characteristics of PPO, the developed pyrolytic oils on the basis of HDPE, LDPE and PP, showed a yellow, yellow-green color, with a strong hydrocarbon odor and an oily / viscous appearance; PPO_{PS 450} oils are reddish in color, very viscous / semi-solid; all developed oils are highly volatile;

(*xiii*) the developed PPGs have a viscous / milky, hydrocarbon-smelling and highly volatile appearance;

(*xiv*) the developed pyrolytic oils (PPO) can find applications in high-capacity power and thermal power plants, as well as in wall-mounted ones, with or without refining or distillation processes; also, the developed pyrolytic gases (PPG) in this study can be used in thermal and power plants;

(*xv*) FTIR analysis allowed the identification of adsorption bands characteristic of pyrolytic oils PPO_{HDPE450} and PPO_{LDPE450}, in the range of 2000 - 1700 cm⁻¹, 1600 - 1460 cm⁻¹, 1275 -1000 cm⁻¹ and 900 - 690 cm⁻¹, fact which confirms the presence of aromatic groups in the compounds resulting from the pyrolysis processes.

Original contributions

The present study, based on the methodology used, the tests performed, and the encouraging results obtained is based on personal contributions, both theoretical and practical, materialized through publications such as articles, participation in international conferences, scientific projects won and proposals for applications. OSIM patent in the field, offering a "friendly" perspective on some raw materials known to today's society as waste, sewage sludge (SS), meat and bone meal (MBM), slag (Z), biomass (BS BW), polystyrene (PS), polypropylene (PP) and polyethylene (LDPE and HDPE).

Application contributions:

- development of an efficient technological system for solar drying of sewage sludge (SS), from W ~ 80 % to W < 15 %;</p>
- the development of a technological system for the disposal of plastic waste through a catalytic and non-catalytic pyrolysis process, by means of a reactor equipped with sandwich blocks to support the catalysts;
- development of alternative fuels from plastics: (i) pyrolysis oil PPO and (ii) pyrolysis gas - PPG;
- development of alternative fuels such as innovative solid energy sorts ESS from waste raw materials;
- development of a pellet product from innovative solid energy sorts EES developed.

The developed alternative fuels, ESS, PPO and PPG, can be a feasible alternative in high capacity thermal and / or electrical installations.

The success of such research in the field of alternative fuels obtained from waste raw materials is of interest to the economic environment, to private companies, investors and state-owned enterprises, with immediate visible effects on environmental protection, quality of life in general. The technological transfer to the economic environment is sustainable and could lead to social inclusion, the creation of new jobs.

Keywords: waste, raw materials, capitalization, alternative fuels, energy, environment, sustainability.

List of publications resulting from doctoral research, published or accepted for publication

Articles published in ISI listed journals

1. *Marius Constantinescu*, Simona Oancea, Felicia Bucura, Corina Ciucure, and Roxana Elena Ionete. Evaluation of the fuel potential of sewage sludge mixtures with beech sawdust and lignite. Journal of Renewable and Sustainable Energy. Vol. 10, 053106 doi.org/10.1063/1.5039808;(2018).

https://www.semanticscholar.org/paper/Evaluation-of-the-fuel-potential-of-sewagesludge-Constantinescu-Oancea/1bffdb575e4535ac7d0670256188005a0d5cddf4

Impact factor: 1,511

Citations: 2

2. *Marius Constantinescu*, Felicia Bucura, Roxana-Elena Ionete, Violeta-Carolina Niculescu, Eusebiu Ilarian Ionete, Anca Zaharioiu, Simona Oancea, Marius Gheorghe Miricioiu. Comparative Study on Plastic Materials as a New Source of Energy. Materiale plastice. Vol. 56, No. 1, pp. 41-46; (2019).

https://www.revmaterialeplastice.ro/Articles.asp?ID=5119

Impact factor: 1,248

Citations: 2

3. *Marius Constantinescu*, Felicia Bucura, Eusebiu Ilarian Ionete, Daniela Ion-Ebrasu, Claudia Sandru, Anca Zaharioiu, Florian Marin, Marius Gheorghe Miricioiu, Violeta Carolina Niculescu, Simona Oancea, Roxana Elena Ionete. From Plastic to Fuel - New Challenges. Materiale plastice. Vol. 56, No. 4, pp. 721-729; (2019). https://www.revmaterialeplastice.ro/Articles.asp?ID=5259

Impact factor: 1,248

Articles published in ISI Proceedings

1. *M. Constantinescu,* F. Bucura, R. Ionete, A. Zaharioiu, C. Ciucure, S. Oancea. Sewage sludge eliminating by capitalizing on its energy potential. SGEM Conference Proceedings, ISBN 978-619-7408-28-7 / ISSN 1314-2704. Vol. 17, Issue 43, pp. 767774; (2017). https://www.sgem.org/sgemlib/spip.php?article11197

Citations: 1

Papers presented at international conferences

1. *M. Constantinescu*, F. Bucura, R. Ionete, A. Zaharioiu, C. Ciucure, S. Oancea. SGEM Sewage sludge eliminating by capitalizing on its energy potential.

International Multidisciplinary Scientific GeoConference MODERN ENERGY AND POWER SOURCES, SGEM (2017), 27-29 November, Vienna. https://www.sgem.org/sgemlib/spip.php?article11197

OSIM patent granted

Ionete Roxana Elena, Ionete Eusebiu Ilarian, Spiridon Ștefan Ionut, *Constantinescu Marius*, Felicia Bucura, Marius Gheorghe Miricioiu. Plastic waste recovery plant. RO133259 (A0) - 2019-04-30. (2018)

https://osim.ro/wp-content/uploads/Publicatii-OSIM/BOPI Inventii/2020/bopi_inv_04_2020.pdf

OSIM patent proposal

1. Ionete Roxana, Ionete Eusebiu Ilarian, Spiridon Stefan Ionut, *Marius Constantinescu*. Solar dryer with moisture extractor. No. of application: a 2018 00390. (2018)

https://osim.ro/wp-content/uploads/Publicatii-OSIM/BOPI-Inventii/2018/bopi_inv_10_2018.pdf

Participation in research and development projects

1. Plastic waste energy vector - ENERGPLAS. PN-III-CIRCLE-CO-CI-2018. Nr. 159 CI. Innovation CEC / UEFISCDI. Technical manager: *Marius Constantinescu*. https://www.icsi.ro/energplas, (2018)

2. Development of solid energy types - SORTENERG. 13 CI-2017; Innovation CEC / UEFISCDI. Technical manager: *Marius Constantinescu*. <u>https://www.icsi.ro/sortenerg</u>, (2017).

Prizes awarded

1. Diploma of Excellence - International Exhibition of Scientific Research, Innovation and Inventions Pro Invent Edition XVII, March 20 - 22, 2019, Cluj Napoca, <u>https://crmse.utcluj.ro/index.php/anunturi/salonul-pro-invent-2019-in-20-22-martie-lacluj-napoca.html</u>

patent proposal "Solar dryer with humidity extractor", authors: Roxana Elenna Ionete, Ionete Eusebiu Ilarian, Stefan Ionuț Spiridon, *Marius Constantinescu*.

2. Diploma of Excellence and INVENTICA Medal 2019 - International Invention Exhibition "INVENTICA 2019", 26-28.06.2019, Iași, Romania

https://www.icsi.ro/wp-content/uploads/2020/06/Raport-ANUAL-2019_ICSI-Rm-Valcea_Pt-pag.pdf

for the invention "Solar dryer with humidity extractor", authors: Ionete Elena Roxana, Ionete Eusebiu, Spiridon Stefan Ionuț, *Constantinescu Marius*.

Selective Bibliography

S. Uttara, Nishi Bhuvandas, Vanita Aggarwal. Impacts of urbanization on environment. *International Journal of Research in Engineering & Applied Sciences.* Vol. 2, Issue 2 ISSN: 2249-3905, pp. 1637-1645, (2012).

Sunil Kumar, J. K. Bhattacharyya, A. N. Vaidya, Tapan Chakrabarti, Sukumar Devotta, A. B. Akolkar. Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight. *Waste Management*. Vol. 29, pp. 883-895, (2009).

Fátima Aparecida de Morais Lino, Kamal Abdel Radi Ismail. Municipal Solid Waste as Sustainable Energy Source for Brazil. *International Journal of Energy and Power Engineering*. Vol. 4, Issue 4, pp. 197-204, (2015).

S. T. El-Sheltawy, Eslam G. Al-Sakkari, Mai Fouad. Waste to Energy Trends and Prospects: A Review. *Conference: 6th International Conference on Solid Waste Management, At Jadavpur University, Kolkata, India.* Conference Paper, (2016).

Sakadjiana B, Hua S, Maryamchika M, Flynna T, Santelmanna K, Mab Z. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles. *Energy Procedia*. Vol. 69, pp. 1404-1411, (2015).

Stephen Mills. Combining solar power with coal-fired power plants, or cofiring natural gas. *Clean Energy.* Vol. 2, Issue 1, pp. 1-96 (2018).

Zhao Y, Hong H, Jin H. Appropriate feed-in tariff of solar-coal hybrid power plant for China's Inner Mongolia Region. *Applied Thermal Engineering*. Vol. 108; pp. 378-387, (2016).

Avalon C. S. Owens, Précillia Cochard, Joanna Durrant, Bridgette Farnworth, Elizabeth K. Perkine, Brett Seymoure. Light pollution is a driver of insect declines. *Biological Conservation*. Vol. 241, 108259; (2020).

Montira J Pongsiri, Sam Bickersteth, Cristina Colón, Ruth DeFries, Mandeep Dhaliwal, Lucien Georgeson, Andrew Haines, Natalia Linou, Virginia Murray, Shahid Naeem, Roy Small, Judit Ungvari. Planetary health: from concept to decisive action. *The Lancet Planetary Health*. Vol. 3, Issue 10, pp. 402-404; (2019).

Hao Shen, Zhengxiang Gu, Gengfeng Zhen. Pushing the activity of CO₂ electroreduction by system engineering. *Science Bulletin.* Vol. 64, Issue 24, pp. 1805-1816; (2019).

Avalon C. S. Owens, Précillia Cochard, Joanna Durrant, Bridgette Farnworth, Elizabeth K. Perkine, Brett Seymoure. Light pollution is a driver of insect declines. *Biological Conservation*. Vol. 241, 108259; (2020).

Montira J Pongsiri, Sam Bickersteth, Cristina Colón, Ruth DeFries, Mandeep Dhaliwal, Lucien Georgeson, Andrew Haines, Natalia Linou, Virginia Murray, Shahid Naeem, Roy Small, Judit Ungvari. Planetary health: from concept to decisive action. *The Lancet Planetary Health*. Vol. 3, Issue 10, pp. 402-404; (2019).

Syarif Hidayat, Muhammad S., Abu Bakar, Yang Yang, Neeranuch Phusunti, A. V. Bridgwater. Characterisation and Py-GC/MS analysis of Imperata Cylindrica as potential biomass for bio-oil production in Brunei Darussalam. *Journal of Analytical and Applied Pyrolysis*. Vol. 134, pp. 510-519; (2018).

Vasile Stanciu. UEFISCDI. CEC de Inovare. Dezvoltarea unor sorturi energetice solide (SORTENERG). 13CI/2017; <u>https://www.icsi.ro/sortenerg</u>, (2017).

Roxana Elena Ionete, Diana Ionela Stegarus, Elisabeta Irina Geana, Oana Romina Botoran, Claudia Sandru, Marius Gheorghe Miricioiu. Characterization and Classification of Romanian Wines by Origin A chemometric approach based on some metals and phenolic composition. *Revista de Chimie*. Vol. 70, Issue 11, pp. 3761-3768 (2019).

S.H. Safe. Hazard and Risk Assessment of Chemical Mixtures Using the Toxic Equivalency Factor Approach. *Environmental Health Perspectives*. Vol. 106 (S4), pp. 1051-1058, (1998).

Man-SungYim, François Caron. Life cycle and management of carbon-14 from nuclear power generation. *Progress in Nuclear Energy*. Vol. 48, Issue 1, pp. 2-36 (2006).

Kotzer TG, Watson WL. Spatial and temporal distribution of 14C in cellulose in tree rings in Central and Eastern Canada: comparison with long-term atmospheric and environmental data, AECL-12002. (1999).

Shuhang Wu. Variation of atmospheric 14CO2 and its spatial distribution. *Journal of Environmental Radioactivity*. Vol. 169-170; pp. 116-121. (2017).

F. Zannikos, S. Kalligeros, G. Anastopoulos, and E. Lois. Converting Biomass and Waste Plastic to Solid Fuel Briquettes. Hindawi Publishing Corporation Journal of Renewable Energy. Vol. 2013, Article ID 360368, 9 pages; (2012).

Sebastian Werle. Analysis of the possibility of the sewage sludge thermal treatment. *Ecological chemistry and engineering* a. Vol. 19, pp. 137-144; (2012).

Aneta Magdziarz, Małgorzata Wilk. Thermal characteristics of the combustion process of biomassand sewage sludge. *Journal of Thermal Analysis and Calorimetry*. Vol. 114, Issue 2, pp. 519-529; (2013).

Ionete Roxana Elena, Ionete Eusebiu Ilarian, Spiridon Stefan Ionut, Constantinescu Marius. Solar dryer with humidity extractor. RO132880. (2019).

E. Yilmaz, M. Wzorek, S. Akcay. Co-pelletization of sewage sludge and agricultural wastes. *Journal of environmental management*. Vol. 216, pp. 169-175; (2018).

Marius Constantinescu, Simona Oancea, Felicia Bucura, Corina Ciucure, and Roxana Elena Ionete. Evaluation of the fuel potential of sewage sludge mixtures with beech sawdust and lignite. *Journal of Renewable and Sustainable Energy*. Vol. 10, 053106 doi.org/10.1063/1.5039808;(2018).

Marius Constantinescu, Felicia Bucura, Roxana Ionete, Anca Zaharioiu, Corina Ciucure, Simona Oancea. SGEM Sewage sludge eliminating by capitalizing on its energy potential. *International Multidisciplinary Scientific GeoConference MODERN ENERGY AND POWER SOURCES*, SGEM (2017), 27-29 November, Vienna.

Ramli Thahir, Ali Altway, Sri Rachmania Juliastuti, Susianto. Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. *Energy Reports.* Vol. 5, pp. 70-77; (2019).

Merve Sogancioglu, Esra Yel, Gulnare Ahmetli. Investigation of the effect of polystyrene (PS) waste washing process and pyrolysis temperature on (PS) pyrolysis product quality. *Energy Procedia*. Vol. 118, pp. 189-194; (2017).

Ayhan Demirbas. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. *Journal of Analytical and Applied Pyrolysis*. Vol. 72, Issue 1, pp. 97-102; (2004).

Witold M. Lewandowski, Katarzyna Januszewicz, Wojciech Kosakowski. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type - A review. *Journal of Analytical and Applied Pyrolysis*. Vol. 140, pp. 25-53; (2019).

Antony Raja, Advaith Murali. Conversion of plastic wastes into fuels. *Journal of Materials Science and Engineering*. Vol. B 1, pp. 86-89; (2011).

M. Constantinescu, F. Bucura, R. E. Ionete, A. Zaharioiu, C. Ciucure, S. Oancea. Sewage sludge eliminating by capitalizing on its energy potential. *SGEM Vienna GREEN Conference Proceedings*. Vol. 17, issue 43, pp. 767-774; (2017).

Felicia Bucura, Roxana Elena Ionete, Florian Marin, Marius Miricioiu, Gili Saros, Anca Zaharioiu, Marius Constantinescu. Energy potential of geothermal gas and sewage sludge biogas. A

laboratory stage investigation. Progress of Cryogenics and Isotopes Separation. Vol. 21, Issue 1; (2018).

Marius Constantinescu. Deșeurile din plastic vector de energie - ENERGPLAS. PN-III-CERC-CO-CI-2018. Nr. 159 CI (2018).

Ionete Roxana Elena; Ionete Eusebiu Ilarian; Spiridon Ștefan Ionut; Constantinescu Marius; Felicia Bucura; Marius Gheorghe Miricioiu. Instalație de valorificare a deșeurilor din plastic. RO133259 (A0) - 2019-04-30. (2019).

Marius Constantinescu, Felicia Bucura, Roxana-Elena Ionete, Violeta-Carolina Niculescu, Eusebiu Ilarian Ionete, Anca Zaharioiu, Simona Oancea, Marius Gheorghe Miricioiu. Comparative study on plastic materials as a new source of energy. *Materiale Plastice*. Vol. 56, pp. 41-46; (2019).

Marius Constantinescu, Felicia Bucura, Eusebiu Ilarian Ionete, Daniela Ion-Ebrasu, Claudia Sandru, Anca Zaharioiu, Florian Marin, Marius Gheorghe Miricioiu, Violeta Carolina Niculescu, Simona Oancea, Roxana Elena Ionete. From Plastic to Fuel - New Challenges. *Materiale plastice*. Vol. 56, No. 4, pp. 721-729; (2019).