"LUCIAN BLAGA" UNIVERSITY

FACULTY OF AGRICULTURE, FOOD INDUSTRY AND THE ENVIRONMENT

AREA: INDUSTRIAL ENGINEERING

PHD THESIS SUMMARY

PREPARATION AND CHARACTERIZATION OF A TONED FOOD PRODUCT THAT HARNESS THE POTENTIAL BIOACTIVE OF NATIVE PLANTS

COORDINATOR:

Prof. Univ. Dr. Ing. Ovidiu Tița

Candidate:

Daniela Maria Şandru

SIBIU

2017

SUMMARY	2
LIST OF NOTATIONS AND SYMBOLS	12
LIST OF FIGURES	14
LIST OF TABLES	26
FROM THE AUTHOR	28
The purpose and objectives of the thesis	29
INTRODUCTION	32

PART I-A

RESEARCH ON LITERATURE OF BIOACTIVE POTENTIAL OF INDIGENOUS PLANTS

CHAPTER I

GENERAL IDEAS ABOUT THE BIOACTIVE POTENTIAL OF INDIGENOUS PLANTS

1.1. Introduction	35
1.2. Native plants with bioactive potential	35
CHAPTER II	
CHARACTERIZATION OF BIOACTIVE COMPOUNDS IDENTIFIED IN INDIGENOUS PLANTS	
2.1. Polyphenols	42
2.1.1. Flavonoids	43
2.1.1.1. Tannins	44
2.1.2. Stilbenes	48
2.1.3. Phenolic acids	48
2.1.3.1. Cinnamic acid	48
2.1.3.2. Caffeic acid	49

2.1.3.3. Ferulic acid	50
2.1.3.4. Gallic acid	50
2.2. Terpenes	50
2.3. The antimicrobial action of the bioactive compounds	51
CHAPTER III TECHNICAL TRAINING OF PLANT WITH BIOACTIVE POTENTIAL	
3.1. Harvesting	54
3.2. Drying and Storage	55
CHAPTER IV	
TONED BEVERAGES WITH MIXTURES OF HERBS AND SPICES	57

EXPERIMENTAL PART

PERSONAL RESEARCH ON BIOACTIVE POTENTIAL OF NATIVE PLANTS AND THEIR USE IN VALUABLE ALCOHOLIC PREPARATIONS

CHAPTER V

CHARACTERIZATION OF INDIGENOUS PLANTS WITH BIOACTIVE POTENTIAL

5.1. Identification and quantification of polyphenols in native plants with	bioactive
potential	61
5.1.1. Materials and methods	61
5.1.2. Results and discussions	62
5.1.3. Conclusion	63
5.2. Identification and quantification of flavonoids in native plants with bioactive	
potential	63
5.2.1. Materials and methods	63

5.2.2. Results and discussions	63
5.2.3. Conclusion	64
5.3. Identification and quantification of anthocyanins in native plants with bioactive potential	65
5.3.1. Materials and methods	65
5.3.2. Results and discussions	65
5.3.3. Conclusion	67
5.4. Identification and quantification of tannins in native plants with bioactive potential	67
5.4.1. Materials and methods	67
5.4.2. Results and discussions	68
5.4.3. Conclusion	69
5.5. Identification and quantification of phenolic acids in native plants with bioactive potential	69
5.5.1. Materials and methods	69
5.5.2. Results and discussions	69
5.5.3. Conclusion	71
5.6. Statistical evaluation of results	71
5.7. Assessment of important aromatic compounds in native plants with bioactive	
potential	77
5.7.1. Introduction	77
5.7.2. Materials and methods	77
5.7.3. Results and discussions	78
5.7.4. Conclusion	83
5.8. Antimicrobial activity of extracts from native plants with bioactive potential of bacteria of the genus Escherichia, the species <i>Escherichia coli</i>	83
5.8.1. Introduction	83

5.8.2. Materials and methods	84
5.8.3. Results and discussions	84
5.8.4. Conclusion	86

CHAPTER VI

DEFINING TERMS ON ODOBEȘTI VINEYARD

6.1. Choosing wine - raw material	86
6.2. Geomorphology influence on the overall sensory quality of red wines from the Odobeşti vineyard	86
6.2.1. Introduction	86
6.2.2. Materials and methods	88
6.2.3. Results and discussions	88
6.2.4. Conclusion	90
6.3. Physico-chemical characterization of Merlot wine originated from Şarba / Odobeşti	91
6.3.1. Introduction	91
6.3.2. Materials and methods	91
6.3.3. Results and discussions	91
6.3.4. Conclusion	95

CHAPTER VII

TONED BEVERAGES PRODUCTION TECHNOLOGY WHICH HARNESS THE BIOACTIVE POTENTIAL OF SOME INDIGENOUS PLANTS

7.1. Nutritional conditions of drinks obtain from plant	97
7.2. Technological conditions obtaining herbal balms drinks	97
CHAPTER VIII	

CHARACTERIZATION OF TONED BEVERAGES WHICH HARNESS THE BIOACTIVE POTENTIAL OF SOME INDIGENOUS PLANTS

8.1. Identification and quantification of polyphenols in toned beverages that has	mess the
bioactive potential of native plants	100
8.1.1. Materials and methods	100
8.1.2. Results and discussions	100
8.1.3. Conclusion	100
8.2. Identification and quantification of flavonoids in toned beverages	101
8.2.1. Materials and methods	101
8.2.2. Results and discussions	101
8.2.3. Conclusion	101
8.3. Identification and quantification of anthocyanins in toned beverages	102
8.3.1. Materials and methods	102
8.3.2. Results and discussions	102
8.3.3. Conclusion	102
8.4. Identification and quantification of tannins in toned beverages	103
8.4.1. Materials and methods	103
8.4.2. Results and discussions	103
8.4.3. Conclusion	103
8.5. Identification and quantification of phenolic acids in toned beverages	103
8.5.1. Materials and methods	103
8.5.2. Results and discussions	103
8.5.3. Conclusion	104
8.6. Statistical evaluation of results	104
8.7. Identification and quantification of the valuable phenolic components in	n indigenous

108

herbal drinks

8.7.1. Introduction	108
8.7.2. Materials and methods	109
8.7.3. Results and discussions	110
8.7.4. Conclusion	116
8.8. Evaluation of aromatic compounds in toned beverages made from native pla bioactive potential	nts with 116
8.8.1. Introduction	116
8.8.2. Materials and methods	117
8.8.3. Results and discussions	117
8.8.4. Conclusion	121
8.9. Sensory and aromatically evaluation of toned beverages made from native pla bioactive potential	nts with 122
8.9.1. Introduction	122
8.9.2. Results and discussions	122
8.9.3. Conclusion	128
8.10. Antimicrobial evaluation of toned beverages made from native plants with be potential	bioactive 128
8.10.1. Introduction	128
8.10.2. Materials and methods	129
8.10.3. Results and discussions	129
8.10.4. Conclusion	132

CHAPTER IX

CONCLUSIONS AND PROSPECTS OF FURTHER RESEARCH

9.1. Conclusions	133
9.2. Personal contributions	133

9.3. Prospects for further research	134
BIBLIOGRAPHY	135
CURRICULUM VITAE	149
PAPERS PUBLISHED IN THE THESIS FIELD	151
ANNEXES	a

SUMMARY

SUMMARY
INTRODUCTION
OBJECTIVES OF THESIS
CHAPTER I. CHARACTERIZATION AND INDIGENOUS PLANTS WITH POTENTIAL BIOACTIV
1.1. Identification and quantification of phenolic acids in native plants potentially bioactive11
1.1.2. Materials and methods11
1.1.3. Results and discussions
1.1.4. Conclusions
CHAPTER II CHARACTERIZATION BEVERAGE toned EC harness the potential of bioactive SOME INDIGENOUS PLANTS
2.1. Identification and quantification of polyphenols in bioactive beverages balms that leverages the potential of native plants
1.2.2. Materials and methods
1.2.3. Results and discussions
1.2.4. Conclusions
CHAPTER II CHARACTERIZATION OF TONED BEVERAGES THAT HARNESS THE BIOACTIVE POTENTIAL OF SOME INDIGENOUS PLANTS
2.1. Evaluation of flavor compounds in tonic beverages made from indigenous plants with bioactive potential
2.1.2. Materials and methods14
2.1.3. Results and discussions14
2.1.4. Conclusions
CONCLUSION

INTRODUCTION

Since ancient times wine and wine-based products have accompanied human existence. Along with bread and oil, they are part of a sacred triad of mankind. Use of wine is recorded in various scenes carved, etched, painted, drawn and is mentioned in ancient writings - hieroglyphics, cuneiform, etc. In recent decades, and culinary food market has become extremely dynamic. This trend is explained by the increasing diversification of consumer needs and demands, so manufacturers are challenged to develop and acquire new products that correspond in all respects with the requirements.

Beverages as an important component of nutrition, serving both the food preparation, as well to quench thirst, being used in the daily diet, but also on occasions related to traditions and customs. Tonic wine and gastronomy are used, where the vast variety can join the countless dishes, from appetizer to dessert, not the food itself, but as a caregiver. Pairing wines with various dishes is a true science, which created the specialists in this field. The chemical composition of wine, very complex, and energy has favorable effects on the body.

Polyphenols from wine-based drinks have antiviral, antibacterial, protective role against atherosclerosis and promotes biochemical reactions that protect the cardiovascular system. Recent findings show that procyanidins, in addition to the antioxidant effect of vitamin C and favoring the action speeds up clearance of cholesterol and resveratrol has the ability to inhibit the spread of cancer cells to other parts (metastasis).

Consuming populations recorded increases in longevity of life, reductions in mortality from diseases of the cardiovascular system and a lower percentage of alcoholics.

Keywords: indigenous plants, macerated, toned drinks.

The purpose and objectives of the thesis

This doctoral thesis aims at harnessing the potential of bioactive plants indigenous to obtain tonifinate drinks with harmonious qualities. In order to achieve this goal it has been proposed to be made following scientific objectives:

- Identification and quantification of polyphenols in potentially bioactive native plants.

- Evaluation of aromatic compounds important in potentially bioactive native plants.

-Identify and quantification of phenolic acids in bioactive beverages balms that leverages the potential of native plants.

CHAPTER I

CHARACTERIZATION OF INDIGENOUS PLANTS WITH BIOACTIVE POTENTIAL

1.1. Identification and quantification of phenolic acids in plants indigenous potentially bioactive

1.1.2. Materials and methods

-plante potentially bioactive.

The quantitative evaluation of phenolic acids was carried out by the Folin-Ciocalteu method modified: Folin-Ciocalteu method is based on the oxidation of phenols using a solution of molibdo-tungstate (Na2WO4 / Na2MoO4). O2 result of this reaction, which reacts with molybdate to form ion (Mo4 +) (blue), whose absorbance is followed spectrophotometrically in the range 420-1000. The maximum absorbance was detected at 280 nm, the reaction taking place in a basic medium. It was used as a standard gallic acid.

1.1.3. Results and discussions

The concentration of phenolic acids is between a minimum of 1,247 mg / L which are recorded on bilberry (Vaccinium myrtillus L.) (leaves) and a maximum amount of 67 937 mg / L at fairies phenolic acids (Galium mullugo L.).

Figure 1. Evaluation of phenolic acids concentration of potentially bioactive plant extracts: bilberry (leaves and fruits) (Vaccinium myrtillus L.), strawberries (Fragaria L.), chicory (Cichorium intybus L.), yarrow (Achillea millefolium L .), dumb (Teucrium chamaedrys L.), fennel (Foeniculum vulgare Mill.), thorn (Xanthium spinosum L.), juniper (Juniperus communis L.), wild rose (Rosa canina L.), dill (Anethum graveolens L.) , mint (Mentha L.), cranberry (branches and fruits) (Vaccinium vitis-idaea L.), blackberries (Rubus fruitcosus L.), hawthorn (Crataegus monogyna Jacq.), dandelion (Taraxacum officinale FH Wigg.), wormwood (Artemisia absinthium L.), willow herb (Epilobium L.), lemon balm (Melissa officinalis L.), celandine (Chelidonium majus L.), Lady's bedstraw (Galium mullugo L.), St. John's wort (Hypericum perforatum L.), oregano (Origanum vulgare L .), centaury (Centaurium erythraea Rafn.), cherry (Prunus cerasus L.) raspberry (leaves and fruits) (Rubus idaeus L.).

1.1.4. Conclusion

Average values of the concentration of phenolic acids have been noted in oregano (Origanum vulgare L.), the celandine (Chelidonium majus L.), and dandelion (Taraxacum officinale F. H. Wigg.). The highest concentration of phenolic acids was registered with fairies (Galium mullugo L.), the minimum in terms of the concentration of phenolic acids was observed in bilberry (Vaccinium myrtillus L.) (leaves).

CHAPTER II

CHARACTERIZATION BEVERAGE toned EC harness the potential of bioactive SOME INDIGENOUS PLANTS

2.1. Identification and quantification of polyphenols in bioactive beverages balms that leverages the potential of native plants

2.1.2. Materials and methods

-Drinking toning denoted by B1, B2, B3, B4, B5, B6,

For the determination of polyphenol Folin-Ciocalteu method is used, the reading is performed with the aid of a UV-VIS equipment at a wavelength of 750 nm, a calibration curve is made using successive levels of gallic acid.

2.1.3. Results and discussions

Beverages studied determine the amount of polyphenols is between 995 620 mg / L in drinking B4 and 2225.760 mg / L in drinking B5.

Figure 74. The content of gallic acid equivalent expressed in polyphenols of the drink recipes six B1, B2, B3, B4, B5, B6

2.1.4. Conclusion

All six drinks obtained important polyphenol content. It is noted that a maximum content of polyphenols in the beverage were determined B5.

2.2. Evaluation of aroma compounds in beverages balms made from native plants potentially bioactive

2.2.2. Materials and methods

Tonic beverages made from plant denoted by B1, B2, B3, B4, B5, B6

Evaluation aromatic profile of the six drinks toning was performed using the system GC / FID (gas chromatograph coupled with ionisation flame. The system included gas chromatograph Varian 450 GC coupled with Varian 240 MS model mass spectrometer (Varian Inc - California , USA) equipped with a capillary column TG-WAXMS Thermo Scientific (Waltham, MA USA) (60m x 0.32 x 0.25 pm).

It has been followed the concentration of methanol, acetaldehyde and ethyl acetate.

2.2.3. Results and discussions

As shown in figure 3, the concentration of methanol in the six samples is between 6.1901 mg / L to B4 and a maximum of 27.0132 mg / L to the sample B3. B2 and B6 samples showed values close to 16.5809 mg / L respectively 15.2745 mg / L. Samples B1 and B5 showed accumulations of methanol 22.1858 mg / L respectively 24.3814 mg / L.

Figure 3. Assessment of methanol concentration in the six drinks balms

In figure 4 it is noted evolution of acetaldehyde and ethyl acetate in the six beverage under study. Acetaldehyde values range between 0.0015 mg / L in sample 1, 0.0019 mg / L in sample 2, and 0.0201 mg / L in the sample 4. Double observed values for sample B3 where they are at a rate of 0.0053 mg / L. Halfway maximum B5 and B6 lies evidence showing amounts of 0.0098 mg / L respectively 0.0122 mg / L.

Figure 4. Assessment of acetaldehyde concentration and ethyl acetate in the six drinks balms

The ethyl acetate shows values that are between 0.0064 mg / L (B4) and 0.0362 mg / L (B5) the intermediate values seen in the samples B1 to 0.008 mg / L, B2 0.0195 mg / L B3 to 0.0314 mg / L and B6 0.0275 mg / L.

2.2.4. Conclusion

Values of methanol fluctuates in the six samples, but below the maximum allowed by law.

Esters (acetate) is at values that lead to pleasant fragrances, suave, yet astringent.

CONCLUSIONS

- We identified and quantified polyphenols in potentially bioactive native plants.

All plants surveyed contain polyphenols in varying amounts.

- We evaluated some aromatic compounds important in potentially bioactive native plants.

In the category of aromatic compounds were revealed esters, higher alcohols, aldehydes and terpene compounds.

-I Identified and quantified phenolic acids in bioactive beverages balms that leverages the potential of some native plants.

The six beverage toning phenolic acids have in their composition at concentrations ranging from one product to another.