Ralf D. Fabian

Validating Non-Algorithmic Software in Service-Oriented Engineering Research

Addendum to

Bounded Rationality in Agent Orientation -"Just-In-Time" Visual Pattern Recognition

(PhD Thesis in Computer Science and Information Technology)

"Lucian Blaga" University of Sibiu,
"Hermann Oberth" Faculty of Engineering
Sibiu, 2013

Copyright: "Lucian Blaga" University of Sibiu, Faculty of Engineering, Ralf D. Fabian

In the discussion of ecological or social systems, it is not enough simply to say that everything depends on everything else, and so we must look at the whole system (OECD, Science, Growth and Society: A New Perspective, 1971: 57) [16].

Table of Contents

FIRST CHAPTER: INTRODUCTION 5
FROM REQUIREMENT TO OPPORTUNITY 5
1.1. AbOUT THE TOPIC 5
1.1.1. Thematic Context 5
1.1.2. Historical Context 5
1.1.3. Author's Stance 6
1.2. Addendum Configuration 7
1.2.1. Abbreviations 7
1.2.2. Organization 8
1.2.3. Appendices. 8
SECOND CHAPTER: LESSONS LEARNED (DIAGNOSIS) 10
ROOT CAUSES OF FAILING TO VALIDATE NEW SOFTWARE 10
2.1. Non-Algorithmic Software? Rationale, Application Area, Misuse. 10
2.1.1. (Non-)Algorithms: Oxymoron, Gadget, Luxury, or Just Slogan?. 10
2.1.2. (Non-)Algorithms to Model Entities That Behave (Non-)Mechanistically 11
2.1.3. Pseudo-Algorithms: Variants, Surrogates and, Above All, Confusion. 12
2.2. Visual Pattern Recognition: A Threefold Unsuitable Research Area 13
2.2.1. Domain Unfit for Applying Non-Algorithms to Prove the Thesis Ideas. 13
2.2.2. No "User-Pulled" Interest in Exploratory Research (Why Other Memes?) 13
2.2.3. No "Technology-Pushed" Research Interest Outside the (Moore's) Law 14
2.3. Deficient Application 15
2.3.1. (Partial?) Corollary: Unimpressive and Old-Fashioned Application 15
2.3.2. Poor Illustration of New Mechanisms in Product-Oriented Setting 16
2.3.3. Final Blow for Validation: Simulated Simulation of Interface Agent. 16
THIRD CHAPTER: LESSONS APPLIED (TREATMENT) 18
VALIDATING TRANSDISCIPLINARY SERVICE-ORIENTED RESEARCH 18
3.1. Dissecting the Requirements 18
3.1.1. "The thesis is insufficiently supported as regards validation". 18
3.1.2. "Scientific Methodologies and Engineering Methods" 19
3.1.3. "Generally Accepted/Used" Methods. 19
3.2. Following the Requirements 20
3.2.1. Changing the Perspective after Failing to Validate Thesis Contributions 20
3.2.2. Concepts and Approaches to be Emphasised in Relevant Modelling 21
3.2.3. Mechanisms to be Demonstrated via "Proof-of-Concept" Software 21
3.2.4. Choosing a Domain Fitting with "Proof-of-Concept" Validation 22
3.3. New Course in New Context 23
3.3.1. Adapting to New Conditions. 23
3.3.2. (Re)Adapting to the (Widening?) Paradigm Gap 23
3.3.3. Defending the New Orientation of the Next Three Chapters 24
3.3.4. Non-Algorithmic Cybernetic Modelling of Living Systems 25
FOURTH CHAPTER: NEW MODELLING SUBBRANCH 27
NON-ALGORITHMIC CYBERNETIC MODELLING FOR BIOLOGY 27
4.1. Matryoshka Doll Framework and Start Vector 27
4.1.1. Research Toolkit in Matryoshka Doll Shape. Three Perspectives 27
4.1.2. Premises to Start from 29
4.1.3. Negotiable and Adjustable Criteria 30
4.1.4. Desiderata. Why "Proof-of-Concept" Applications? 31
4.2. Rationale: Fighting (Cognitive) Chaoplexity in Biologic Research 31
4.2.1. Chaoplexity, Main Hurdle in Biologic Modelling. State of the Art 31
4.2.2. Major Limits of Current Biologic Modelling. State of the Art. 32
4.2.3. Assumptions for Cybernetic Modelling 34
4.3. "JUST-IN-Time" ApPROACH: MODELLING AS WORKHORSE TOOL IN RESEARCH 34
4.3.1. Anthropocentric Multifunctional Analog (Fuzzy) Interface 35
4.3.2. Microchronic Cybernetic Modelling, Sine Qua Non in Biologic Research 35
4.3.3. From Spatial Data To Temporal Information. (Undesired) Example 36
FIFTH CHAPTER: NESTED MECHANISMS 38
MECHANISMS AND TIME SPECIES FOR MODELLING STABILITY 38
5.1. Macrochronic Modelling to Cut Perturbation in Simple Systems 38
5.1.1. Barkhausen Revisited: From Atemporality to Discrete Time 38
5.1.2. Stability of Linear Systems in Discrete Time. DOMINO as Inner Doll. 39
5.1.3. DOMINO: Using Trivalent IF to answer questions in "What-if" scenarios 40
5.2. ARC: Microchronic Modelling of Simplest Biologic Subsystems 41
5.2.1. Amplification: Is Natural. Yet, Nature is Chaoplex 41
5.2.2. Reaction: (Negative) Feedback Is Vital for Stability in Living Systems. 42
5.2.3. Coordination: Stability (Homeostasis) of Oversimplified Living Systems 43
5.3. ARCH: Hysteresis as Tool to Counter Anthropogenic Disturbance 44
5.3.1. Transdisciplinary ARCH: From Claude Bernard to System Biology 44
5.3.2. Engineering ARCH: From Intractable Equations to Simple FOR Loops 45
5.3.3. Adapting to Perturbation: Anthropogenic Disturbance Is Unpredictable. 47
5.4. Wienerian Time: A Newcomer in Microchronic Cybernetic Modelling 48
5.4.1. Confusion about Bergsonian Time as Temporal Dimension in Biology 49
5.4.2. Wienerian Time. (Sufficient?) Reasons to Use it in Ecologic Models. 50
5.4.3. Wienerian Time in Modelling: Correlating Distinct Time Dimensions 50
5.4.4. Time as Chaoplex Feature of Living Systems. A Memetic Approach. 52
SIXTH CHAPTER: RESEARCH TOOLKIT APPLIANCE 54
TOOL FOR EXPLORING HOMEOSTASIS IN BENTHIC COMMUNITIES 54
6.1. Rationale, Approach, and State of the Art. 54
6.1.1. Rationale: Coalescing Six Objectives From Three Distinct Perspectives 54
6.1.2. Approach: Integrating All Proofs in a Flexible, Fault-Tolerant Interface 55
6.1.3. Ecolinguistics Blocked by Conflicting Memes. State of the Art. 56
6.1.4. "What-If" Scenarios in Managing Living Systems. State of the Art 57
6.2. Architecture: Interface as Versatile, Multifunctional Proofing Tool 58
6.2.1. First Toolkit Design-Space Dimensions: Predictability and Simplicity. 58
6.2.2. Predictability. System Stability: What Do (Not) Predict Predictive Models 59
6.2.3. Simplicity. A Simple (Discrete) Time Model for Many-Sided Scenarios 60
6.2.4. Mixing Richness with Clarity: a Multifunctional, User-Friendly Interface 61
6.3. Structure: Implementing Dolls Bottom-Up. Testing Only the Outer 62
6.3.1. Choosing an (Integrated?) Development Environment. 62
6.3.2. Emulating Dynamic Propagation of Exceptions 63
6.3.3. Toolkit as Workhorse: Adding Functionality in Six Short-Lived Steps 64
6.4. Interface Shaping: Benthic Species in Transylvanian Lotic Systems 65
6.4.1. Lotka-Volterra Model: Strong Conditions, Hard to Meet in Real Habitats. 65
6.4.2. Variants of Applying the Lotka-Volterra Model. State of the Art. 66
6.4.3. Shaping the Interface: Four Steps for Predator-Prey Model Scenarios 66
6.4.4. Software Infrastructure for Quantitative Testing of $\boldsymbol{A}, \boldsymbol{\beta}, \boldsymbol{D I U}$, and $\boldsymbol{\Delta t}$. 67
SEVENTH CHAPTER: VALIDATION 69
VALIDATING PROCESS-ORIENTED MODELLING MECHANISMS 69
7.1. "Proof-of-Concept" Validation in Service-Oriented Engineering 69
7.1.1. Service-Oriented " x ": Restricting Meanings and Broadening Confusions. 69
7.1.2. Validation Revisited: "Proof-of-Concept" Applications. State of the Art 70
7.1.3. Assessing Service Quality in Process-Oriented Software Engineering 70
7.2. Quantitative Testing of Magnitudes Needed to Prove Thesis Ideas 71
7.2.1. Solving Standoff: Product-Leaning Quantity vs. Service-Leaning Quality 71
7.2.2. A AND $\boldsymbol{\beta}$ Ensure Simplified (Linear) Cybernetic Systems Stability. 72
7.2.3. $\boldsymbol{\Delta t}$. Discrete Time Fights Chaoplexity Replacing Films by Snapshots. 72
7.2.4. D,I,U. The (Second) Time Features Are Even More Human(Centred) 73
7.3. Service-Oriented Validation of Cybernetic Modelling Concepts 74
7.3.1. Architecture to Validate: $\boldsymbol{S}_{\text {wisc }}$, Design Space for "What-if" Scenarios 74
7.3.2. Interface, Mirror for Functionality: User-Validating Look and Language. 75
7.3.3. Descriptive Scenarios for Field Ecology Research: Interpreting Facts 77
7.3.4. Normative Scenarios for Preserving Benthic Species: Preparing Actions 77
EIGHTH CHAPTER: ASSESSMENT 79
CONCLUSIONS AND FUTURE WORK 79
8.1. Conclusions 79
8.1.1. Fulfilling Requirements: Quantitatively Validating Thesis Contributions 79
8.1.2. Novel Concepts for Modelling Homeostasis via Diverse Species of Time 80
8.1.3. Refining Methods and Building Mechanisms for Illustrating Concepts 81
8.1.4. Integration: "Non-Algorithmic Cybernetic Modelling of Living Systems". 82
8.2. Future Work 83
8.2.1. Short and Middle Range Intentions 83
8.2.2. Long Range Ideas 84
REFERENCES 85
Documents and Papers Shaping the Addendum 85
References (published after defending the thesis, December $2^{\text {ND }}$, 2011) 87
APPENDICES: Code, Test Results, Scenarios, and (a Few) Comments 91
APPENDIX 1: AV1. Code of threads relevant to validation 91
APPENDIX 2: AV2. Quantitative testing results 95
APPENDIX 3: AS3. Copy of decision to postpone thesis validation. 113
APPENDIX 4: AS4. "Proof-of-Concept" User-Validation Assessment 116
APPENDIX 5: AC5. Integral code of the toolkit. 118

FIRST CHAPTER: INTRODUCTION
 From Requirement to Opportunity

After showing its raison d'être (1.1), the addendum organization is presented (1.2).

1.1. About the Topic

The addendum context (thematic, 1.1.1 and historical, 1.1.2) is followed by (and subjectively filtered through) the author's stance (1.1.3).

1.1.1. Thematic Context

The Addendum (ADT) was necessary to obey to [1]. Referring to [2], the decision to validate the thesis was postponed ("Rezoluţia: Se amână luarea deciziei privind validarea tezei de doctorat" [1]), based on the following reasons: "Argumentarea rezoluţiei: Teza este insuficient susţinută din punctul de vedere al validării contribuţiilor. Recomandăm extinderea tezei cu un capitol substanţial de validare, bazat pe metodologii ştiinţifice şi inginereşti general acceptate/utilizate, prin care contribuţiile tezei să fie clar reliefate. Comisia se va pronunţa asupra acordării titlului după completarea tezei cu observaţiile de mai sus" [1].

The key phrases are: "The thesis is insufficiently supported as regards validating its contributions", "based on scientific methodologies and engineering methods", "that are generally accepted/used", and "emphasise clearly the thesis contributions".

To comply with [1] in both letter (validation must be based on "generally accepted engineering methods") and spirit (an irrelevant and poorly implemented experimental model cannot "emphasise clearly the thesis contributions"), its requirements are dissected and interpreted (3.1), restated from a descriptive form into a prescriptive one (3.2) and followed in the rest of $A D T$. However, because the analysis in Chapter 2 revealed deeper causes of failing to validate [2], the "New Course in New Context" (3.3), involved a wholly new approach in a very different research domain, changing drastically the profile of [2].

Consequently, the application research domain where the thesis contributions should be proved, was changed from "Visual Pattern Recognition" to "Non-Algorithmic Cybernetic Modelling of Living Systems". Within this domain, the non-algorithmic software mechanisms to be validated were applied in a research toolkit aimed at exploring homeostasis (with hysteretic delay caused by intense anthropogenic disturbance) in benthic communities (in Transylvanian lotic systems).

1.1.2. Historical Context

Although ADTs history begins at September $12^{-\mathrm{th}} 2012$ (the date of the issuance of [1]), its prehistory (after defending [2], December $2^{\text {nd }}, 2011$) was marked by extending the existing cooperation with the research in [7], to memetic engineering (mainly applied to
ecolinguistics [4] [5]) and by starting to reorient [2] from "Visual Pattern Recognition" - already perceived as blind alley - to a "user-pulled" and more complex transdisciplinary research area more suitable for applying non-algorithmic software.

At first (October 2012, "Plan A") it was intended to design only one application ("Preservation of Ecological Systems Modelled Using GST Applied to Benthic Communities in Transylvanian Lotic Systems") for both validating [2] and continuing [7]. However, possible delays in meeting research deadlines and in completing the experimental model of [7] (now modified, to apply the lessons learned from failing to validate [2]) required to separate the application in [2] from [7]. Likewise, it was necessary to speed up and reduce the scope of the "Proof-of-Concept" (PoC) application for [2] to (new title): "Homeostasis in Benthic Communities Modelled Via GST".

At the begin of 2013, because of institutional reasons, both cooperations had problems. First was discontinued common research with the author of [7] (restarted only at the begin of July, much too late to be reflected in $A D T$). As a result, it has been necessary to set up a "Plan B" - but from the joint post-thesis work, only [5] and partially [4] could be used in $A D T$.

Plan B had two phases:

- B1 was short-lived (January - February, until transdisciplinary cooperation was much slowed down; fortunately, it restarted with full power in April). Plan B1 aimed to save the downscaled application mentioned above, by compensating - at least partially - the lack of temporal information and, above all, the lack of time to get it gathered. An urgency solution trying to "metamorphose" valuable spatial data into badly needed temporal ones was proposed but it proved to be too late (though, the failed solution was kept as - undesired relevant example of applying "JIT", 4.3.3).
- B2 draw all the inferences from the new situation and set up the current framework, based on proposing a new approach to CybMd ("Non-algorithmic cybernetic modelling of living systems", 3.3).

The last update of this addendum took place on July $16^{-t h}, 2013$.

1.1.3. Author's Stance

Since the author's stance is implied in Chapter 1 and Chapter 2, here I add just the thanks for people who helped me most in the last 10 month.

Besides God and my parents, I have to pay tribute to the myriad contributions of my advisors, collaborators, friends and many others that I won't be able to mention here.

My sincere thank goes to Boldur Bărbat for advising me in so many matters of research and life. His tremendous support and incredible energy have had a major influence on this Addendum.

I am grateful to Angele Bănăduc for guiding me along the challenge of applying thesis ideas in ecological/biological systems and validating results as end-user. Together with people of her research group she initialized thought-provoking collaboration opportunities to support Cybernetic Modelling for middle and long range transdisciplinary endeavours.

A great debt of gratitude I owe to my friends: Adriana Deac - for her medical advice and support, keeping me in working parameters throughout the last few months; Cristina Brumar - for her great "Just-in-Time" situation management and always being there when help was needed, even at the cost of timeless discussions; Lucian Răhăian - for his help on demand and brave patience in the final testing phase.

Thank you all for your love, encouragement, patience, inspiration and friendship.

1.2. Addendum Configuration

After an updated list of the abbreviations (1.2.1), the contents organization as self-contained Addendum (ADT) to [2] is outlined in (1.2.2). General information about the appendices is given in 1.2.3.

1.2.1. Abbreviations

A: Amplification factor
ADT: Addendum to Thesis
AI: Artificial Intelligence
API: Application Programming Interface
$\boldsymbol{\beta}: \quad$ transfer factor of the feedback network
BeTi: Bergsonian time
BR: Bounded Rationality
CSIT: Computer Science and Information Technologies
CybMd: Cybernetic Modelling/Model(s)
$\Delta \mathbf{t}$: time granule (interval between two successive discrete time moments)
DOMINO: Decision-Oriented Mechanism for "IF" as Non-deterministic Operator
DIU: Acronym for Delay, Irreversibility, Uncertainty (delay time span)
GST: General System Theory
IDE: Integrated Development Environment
JIT: "Just-in-Time"
MEng: Memetic Engineering
NeTi: Newtonian time
PoC: "Proof-of-Concept"
PrsADT: ADT perspective: validating [2] (software mechanisms) in line with [1]
PrsCSIT CSIT perspective: from one (transdisciplinary research) bridge pillar
PrsU: User perspective: from the other (transdisciplinary research) bridge pillar
SE: Software Engineering
SOE Service-Oriented Engineering
WISC: "What-ff" Scenarios
WiTi: Wienerian time

1.2.2. Organization

Since an $A D T$ is unusual, to enhance clarity, each chapter has a supra-title concentrating the chapter's aim, while the title focuses on the contents. Thus, bringing together all supra-titles from Chapter 2 to Chapter 7, the ADT target is distinctly outlined:

Starting from the lessons learned (diagnosis), the lessons are applied (treatment), proposing a new modelling subbranch, illustrated by nested mechanisms in a research toolkit appliance, able to ensure validation.

Because the syndrome revealed by the diagnosis in Chapter 2 is serious, the treatment prescribed in Chapter 3 is drastic too, thoroughly revisiting validation of transdisciplinary service-oriented research, and setting up a new course in new context (as a result, it is, totally reshaping [2], 1.1.1). The lifeblood of the new autonomous research, as substantial transdisciplinary extension of [2], aiming at modelling homeostasis in ecologic systems, is in the multifaceted Chapters 4,5 , and 6 , answering the questions:
"Why" (Chapter 4): top-down rationale and bottom-up approach for Non-Algorithmic Cybernetic Modelling for Biology.
"What" (Chapter 5): key non-algorithmic Mechanisms and Time Species for Modelling Stability of living systems.
"How" (Chapter 6): research Tool for Exploring Homeostasis in Benthic Communities aimed at "What-if" scenarios (WISC) in Transylvanian lotic systems.

In Chapter 7, titled "Validating Process-Oriented Modelling Mechanisms", the engineering perspective regains pre-eminence: based on PoC validation in SOE, the concepts, approaches, and mechanisms asserted in [2] are systematically tested quantitatively in line with the industrial paradigm.

To be convincing, this thoroughly redesigning required ten multifocal "State of the Art" sections, six of them explicitly labelled as such: Chaoplexity in biologic modelling (4.2.1), Limits of current biologic modelling (4.2.2), Ecolinguistics blocked by conflicting memes (6.1.3), WISC in managing living systems (6.1.4), Variants of applying the Lotka-Volterra Model (6.4.2), Validation through PoC applications (7.1.2). Therefore, 52 from the 65 references, are published in 2012 or 2013 (the older 13 had significant role in reshaping ADT).

1.2.3. Appendices

There are two appendices for validation, two for scenarios, one with the toolkit code, and one with recent papers, downloaded but not referred to:

- AV1. Code of threads relevant to validation. The excerpt of code fragments from AC5 (below) is necessary to show: a) compatibility between non-algorithmic software and quantitative testing; b) lack of suitable IDE for post-industrial engineering exploratory research; c) caducity of Java syntax for SOE [39], [34]; d) scarcity of API functions for real-time programming (mainly, heavy multithreading, [19], [32]); e) extended comments that reduce the "user-unfriendly-C++-family-spawned-unclearness"; f) programming techniques applied to overcome the Java language and the Windows 32 platform
weaknesses; g) introductory information for the next appendix (AV2, where relevant information is drowned in the deluge of data); h) compliance to the letter of [1].
- AV2. Quantitative testing results. Presents the test results for the four magnitudes (A,
$\boldsymbol{\beta}, \boldsymbol{\Delta t}$, and DIU) necessary and sufficient to validate the non-algorithmic mechanisms incorporated in the research toolkit $(6.2,6.4)$ and used in WISC (7.3.3, 7.3.4) the toolkit is designed for.
- AS3. Copy of the decision to postpone thesis validation
- AS4. "Proof-of-Concept" User-Validation Assessment
- AC5. Integral code of the toolkit. The version with comments in Romanian is a future work middle range intention (8.2.1) to be provided together with the Romanian version of the interface, aimed at easing communication in field experiments (7.3.2).
- AB6. Bibliography not referred to in ADT. Aimed at helping transdisciplinary research, it includes about 150 recent scholarly papers downloaded (at least as abstracts) when investigating the ten "State of the Art" sections (1.2.2). For the sake of briefness, they were not included in the sections but could be useful in seminars (or laboratory work) in ecology. However, the appendix is not yet included in $A D T$, lacking a suitable organisation of the topics (hence, it is postponed as future work short range intention).

SECOND CHAPTER: LESSONS LEARNED (DIAGNOSIS)
 Root Causes of Failing to Validate New Software

Working out what was going wrong when failing to validate the contributions of [2], three kinds of aspects emerged, with cumulative negative effect: the very rationale of non-algorithmic software was uncared for, leading to an inappropriate application area (2.1); the experimental model was incongruous (2.2); perhaps the most important factor: the application was deficient (2.3). Without convincing engineering facts, validation was impossible.

2.1. Non-Algorithmic Software? Rationale, Application Area, Misuse

Can software be non-algorithmic? If yes, is it oxymoron, gadget, luxury, or slogan? (2.1.1). Next, its rationale and application area are outlined in opposition to algorithms: (Non-)algorithms are good to model entities that behave (non-)mechanistically (2.1.2). A bewildering software species tries to bridge the gap, pseudo-algorithms: variants, drawbacks and, above all, confusion (2.1.3).

2.1.1. (Non-)Algorithms: Oxymoron, Gadget, Luxury, or Just Slogan?

A Google search (June, 23, 2013) for "everyone who taps at a keyboard... is working on an incarnation of a Turing machine," yields about 4,240 results. Mixing two antithetic phrases in the same sentence and accepting that the sentence is true, proves that any tapping at a keyboard is perceived as algorithmic, ignoring the essential difference between two wholly opposed species of data input.

Indeed, if the input occurs as reaction to a READ instruction, the stepwise functioning of the Turing machine is not interrupted. On the contrary, if the input is initiated by "everyone who taps", the (kernel-mode) thread generated by the (hardware) interrupt is inherently asynchronous with respect to all other threads running in that moment. Hence, any data entering by users (from own initiative) is non-algorithmic par excellence because it happens in an unpredictable moment. Regarding this species of uncertainty as "epistemic facet of nondeterminism" in [2], perhaps exceeded the scope and competence of both thesis and author. On the other hand, denying the very existence of non-algorithmic software because it is sometimes labelled as "nondeterministic", implying the (non-existing) "free will" of "everyone who taps", is debatable too.

A most closed link issue appears when validating qualitative aspects with quantitative testing (7.2.1), where the dispute "future contingent versus determinism", is replaced by the likewise unnecessary metaphysical choice between holism and reductionism.

The stance here is that it is counterproductive to take such stances. Indeed, in computer science as a whole, and mainly in software engineering, there is no need to choose - in a Manicheistic manner - between Emil du Bois-Reymond and David Hilbert, because a boundedly rational approach is to relativize the debate shifting from standpoints
(either "ignorabimus" or "wir werden wissen") to circumstances ("ignoramus", here and now).

Moreover, in science there are syntagma used for such simplifications: "macroscopically it appears that"; for instance: a) cognition is holistic; b) there is no algorithmic method for learning the mother tongue; c) robots and humans reason and act in distinct temporal frameworks. Thus, pragmatically, since this software species can be legitimately referred to, its entities should be labelled. A convenient label at hand could be: non-algorithms.

In short, non-algorithms should not be regarded as:

- Oxymoron. Product-oriented engineering, control engineering, robotics, need predictability, not chaotic asynchronicity (when applied only to be similar to humans).
- Gadget. Nobody cares about the (non)algorithmic nature of the software used for virtual weapons in a Nintendo-like game world.
- Luxury. A bodiless interface agent - the very incentive, apex, and even ethos of non-algorithms - is clearly still luxury. An avatar, even more.

2.1.2. (Non-)Algorithms to Model Entities That Behave (Non-)Mechanistically

The (too) concise title needs explaining, since the brackets suggest two assertions: The first refers to non-algorithms (without brackets). The second states the role of algorithms versus their negative counterparts (no brackets, contents included): "Algorithms are good for modelling any entity that behaves mechanistically", i.e., not just objects but also processes as usual in domains cited above. The lesson learned is twofold, namely a PhD thesis in computer science should never: a) use disputable concepts, or mechanisms, or procedures, without a comprehensive, undisputable explanation of the intended meaning, target, reason, and approach; b) apply such entities outside the framework set up by the explanation.

To avoid repeating the mistakes of [2], both aspects are abridged after [6], where the issue is looked at from larger - both software and memetic engineering - perspectives:

- "Non-algorithmic" means asynchronous. Explaining the "non-scientific" name through memetic factors, [6] precedes the scrutiny of non-algorithms with a telling history of realtime programming, showing that the first exogenous and asynchronous intervention in programs was called "unsolicited input". Then, the defining feature of this software species is focused on: "Unexpectedness is mirrored in software through asynchronicity. In turn, asynchronicity involves two threads: the thread (perhaps kernel thread) that signals the interrupt or event and the thread that handles the event as exception. The major problem is to obtain a suitable trade-off between asynchronicity (required by the very exception nature) and a minimal synchronicity (required by communication coherence)" [6].
- Non-algorithms should reflect "Non-Turing machine" behaviour. Defined by opposition to algorithms, non-algorithms are applicable to the set of "(sub)systems to be modelled considering uncertainty caused by future contingency". The "computer-science-legitimacy" of using "future contingency" without any philosophic connotation, is defended by the authority of The Stanford Encyclopedia of Philosophy: "To
qualify as contingent the predicted event, state, action or whatever is at stake must neither be impossible nor inevitable" [20]. Thus, to illustrate convincingly "what they are and where to apply them", it is fundamental to realise that this predicted "event, state, action or whatever", "occurs in irreversible time. Here irreversible has the old and simple Augustinian meaning: (even for God) Undo is excluded. [...] Any kind of outside stimulus must be modelled as unexpected in irreversible time (if "expected", the stimulus is trivial to model, since certainty is the desired limit of uncertainty). [...] In short, non-algorithms should be applied iff unexpectedness is architectonically inevitable" [6].

2.1.3. Pseudo-Algorithms: Variants, Surrogates and, Above All, Confusion

If non-algorithmic software is both conceptually rejected and practically necessary, how are currently modelled processes that involve unexpectedness caused by future contingency, i.e., that progress in irreversible time? There are four kinds of situations, described in [6] "in order of increased connection to unexpectedness:

- Online interaction. [...] When using script or mark-up languages, there is neither model, nor program, [...] nor unexpectedness. [...] Because of the "all software is algorithmic" meme, most users of such languages believe that these are programming languages. [...]
- Service-oriented applications. [...] In SOE any service provider should inform the user about the service evolution, mainly when something unexpected occurred. [...] Considering - as usual in product-oriented engineering - that unexpectedness is excluded (all possible situations being dealt with in the long time ago frozen "Product specification", or even in obsolete expert systems, via the "Closed-World Assumption") means oversimplifying even for the few non-trivial services that can be provided in canned form. [...] Informing the user only through some rare, synchronous messages, means ignoring the basic requirement that services are processes that have to evolve in user irreversible time.
- Replacing exceptions through polling. [...] Due to Moore's Law, time granularity is so fine that "unexpectedness can be looked for" through so fast polling, that interrupts can be treated immediately, needing no mirroring in exceptions. [...] Events occur so quickly that macrochronically they appear as instantaneous and synchronous (thus waiting for exceptions in irreversible time, can be substituted by looping in reversible time). [...] It is a delicate risk-management issue to assess whether polling or exceptions are less expensive and more robust.
- Simulating BIC (bio-inspired computing). [...] This is the only situation when unexpectedness is accepted - and even welcome. However, this "unexpected" was unknown before, not because it did not occur yet, but because it was not revealed by discovery" [6].

2.2. Visual Pattern Recognition: A Threefold Unsuitable Research Area

An experimental model can be rather inadequate than incorrect. Thus, in [2] the model incongruity had three facets: the domain was unfit for applying non-algorithms to prove the thesis contributions (2.2.1); there was/is no "user-pulled" interest in exploratory research (why should users take part in investigation based on other memes?) (2.2.2); likewise, there was/is no "technology-pushed" research interest "Outside the (Moore's) Law" (2.2.3).

2.2.1. Domain Unfit for Applying Non-Algorithms to Prove the Thesis Ideas

"Thesis Ideas" is used as shortcut for the contributions of [2] selected as "concepts and approaches to be emphasised in relevant modelling" (3.2.2). The main thesis ideas - and above all the synergistic effect of the two thesis pillars, "BR + JIT" - cannot be proved without non-algorithmic software mechanisms. Thus, the first wrong decision was to choose "Visual pattern recognition" as domain for the experimental model aimed at validating [2] since it was unfit for illustrating the main feature of non-algorithms: asynchronicity expressing unexpectedness from entities with non-mechanistic behaviour (2.1.2).

Indeed, how behaves a pattern? As any object, a pattern is atemporal and does not behave at all. Only (too) metaphorically - even according to Dennet's intentional stance it can be deemed that it "waits to be discovered". However, as it was shown above, such kind of problems are suitably solved by pseudo-algorithms (mainly by artificial neural networks, that seem to be the best for this task).

Hence, the working - and proving - power of non-algorithmic mechanisms aimed at supporting the temporal dimension of SOE could not be put into action. The most frustrating example is the powerlessness in exploiting the trivalent IF in DOMINO, where the third value was devised to deal with uncertainty caused by future contingents. Thus, the third IF exit, realised as "blend of a Łukasiewicz "i" interpreted as "unknowable" or "problematical" and a Kleene "u" interpreted as "temporary lack of knowledge"" [12], the blend being understood pragmatically as "UNDECIDABLE in the time span given" [12], remained unexploited.

2.2.2. No "User-Pulled" Interest in Exploratory Research (Why Other Memes?)

Of course, any dedicated researcher is (firstly) interested in exploratory research. Though, to reach a critical mass, the interest must be user-pulled by economic or social motivation (3.1.1). In the case of [2], the lessons learned through failing to find transdisciplinary research support are telling, because - besides the usual financial reasons - they highlight the cardinal influence of (ignoring) memetic factors, both general and specific ones. "Specific" refers here to much stronger variants of the general memes encountered at psychologists and sociologists, as potential transdisciplinary research collaborators (mainly in carrying out a relevant experimental model for validating [2]):

- Widespread memes. a) Qualitative research is held in discredit, because it seems to disregard mathematics (from optimisation methods, to differential equations, to numeric
computation in general, [2], 5.3.2, 6.1.2, 6.4.1). A (careless) reference to real-world facts is stigmatised as "empirical research" and could downgrade a PhD thesis - no matter what topic, domain, or relation with CSIT is involved. (Referring to "field data" is just a bit less imprudent.) b) Doxastic logic is preferred to credal logic, when interpreting/disputing any term having (even far away) relation to a philosophic stance (e.g., "nondeterministic", "reductionist", "future contingent") or seeming to confine the humanistic ideal of perfection (e.g., "bounded rationality", "Just-in-Time", "Al").
- Psychologist/sociologist memes. To impair bias in assessing the causes of lacking transdisciplinary support (namely, the memetic background of the paradigmatic discrepancy), just a quote about their main IT workhorse tool GPSS (General Purpose Simulation System), "developed around 1960 [...], an old tool, but it is still used and works perfectly" [56]: "It seems that the commercial simulation tools are being developed in order to prevent the user from any coding and to make all the mathematics (statistical considerations). [...] To say that this is a correct tendency, first of all we must know who the simulationist is. If he/she is a plant engineer, a sociologist, a warehouse manager or just an amateur, the tool should be "fast and easy", and the simulationist need not be a programmer or mathematician (user of kind 1). [T]he users of kind 1 frequently commit a fundamental errors, like using the Poisson enter-arrival time distribution for the Poisson arrival process" [56]!.

In short, why should users (of kind 1 or not) take part in investigation based on other memes (or simply ignoring the deep-rooted own ones)? Above all, when "recent trends" "enable the user to create intelligent objects in discrete event simulation" [56]!.

2.2.3. No "Technology-Pushed" Research Interest Outside the (Moore's) Law

"Whether there is an ultimate limit to Moore's Law is an open debate dependent upon future electronic innovations, material science, and physics. [T]he potential future nanotechnologies will enhance the current known barriers for Moore's Law. [O]ur discussion of Moore's Law in turn of density of discrete computing elements will become meaningless from quantum mechanical uncertainty and entanglement technologies point of view. As before those days, the economic limit will continue playing the key role, despite of the fact that we know we cannot break the fundamental limits of the atomic and nucleus nature of matter" [68]. Despite a thorough scrutiny of nanotechnologies versus limits (3D semiconductor, Spintronics, Heisenberg uncertainty, CNT transistor, Single-atom transistor), even the pessimistic evaluation in [68] predicts a limitation somewhere at "log2 (number of transistors/1000)" = 30, between 2030 and 2040.

Relating to image processing, the lack of engineering interest in incremental research (specifically, in software mechanisms aimed at speeding up image processing) should have been visible from the begin of the century and obvious a few years ago. As regards the superior domain (visual pattern recognition), sound engineering risk management ("If it works don't fix it"), entailed continuing to apply the (pseudo-algorithm based) methods to improve artificial vision in robotics. (Perhaps, robotics is the only field requiring exploratory
research in any kind of pattern recognition.) Anyhow, visual pattern recognition was ill placed for validating software mechanisms aimed at SOE.

In short, because of Moore's Law, illustrating new mechanisms outside a chaoplex user-validated application is obsolete too or - as in the case of image processing - even pointless. Lesson learned: exploratory research in (software) engineering is necessary because of Moore's Law, provided that a suitable application domain has been found.

2.3. Deficient Application

After the chosen domain proved to be a blind alley, a successful application was the last rescuer. Yet, as (partial?) corollary of previous choices it proved to be too hard to avoid an unimpressive and old-fashioned application (2.3.1). Thus, it was no surprise that in product-oriented setting the new non-algorithmic mechanisms were poorly illustrated (2.3.2). Next came the final blow for validation: simulated simulation of an interface agent (2.3.3).

2.3.1. (Partial?) Corollary: Unimpressive and Old-Fashioned Application

The question sign in the brackets suggests that, despite the limited capability of the "visual pattern recognition" domain to illustrate convincingly non-algorithmic software, there was still a "partial hope" that a successful application could save validation. The attempt failed from both perspectives: significance (unimpressive architecture) and handling (old-fashioned structure). They are dealt with separately only to highlight the lessons to be learned:

- Unimpressive architecture. The core idea was good: focus on uncertainty to put the new mechanisms at work, first of all DOMINO, despite all difficulties (2.2.1). Yet, the power of DOMINO lies in expressing unexpectedness caused by future contingency through asynchronicity (2.2.1). This power remained vain because - as in the case of pseudoalgorithms (2.1.3) - the "unexpected" was unknown but not uncertain (since it was frozen in the bits of Lena's images). The attempt to force the unexpected via a detective-like scenario was prone to failure (it was a blatant example of the "solution in search of a problem" syndrome). As a result, interesting architectonic features referring to patterns (designating and demarcating patterns instead of just recognising them) or to non-verbal communication (reducing both graphocentrism and logocentrism) were undefended.
- Old-fashioned structure. Despite conceived as clearly service-oriented, the experimental model was implemented in an obsolete product-oriented outward appearance. Indeed, the service was rather hidden since the tangible output was still an image, albeit with non-uniform processed fragments. What is more, this processing - if necessary at some moment - would have become futile very soon because of Moore's Law (2.2.3).

In short, the application, lacking a genuinely post-industrial real-world setting, was unable to illustrate non-algorithms in an industrial background, where, acting as mixed blessing, they are perceived (understandably) as oxymoron (2.1.1). The lesson is detailed below.

2.3.2. Poor Illustration of New Mechanisms in Product-Oriented Setting

"Exceptions convey to software the fundamental need for mirroring "Just in Time" events in the system and its (open, dynamic, and uncertain) environment). To be seen as exceptions, such events must be a) unexpected, b) consequential, and c) rare enough. If the available IDE lacks high-level primitives for the first two features, they should be emulated through software mechanisms able to reflect interrupts as non-algorithmic entities" [6]. Referring to chaoplex systems [6] adds three reasons why reaction is their key feature: "a) reacting to environment stimuli is a manifest sign of efficient intentional behaviour; b) it evokes resistance to environment actions (a chaoplex system is able to respond according to its own intentions); c) likewise, it evokes also persistence, continuance through stability (here the undertone is to react in line with system (preservation) strategy, not necessarily implying antagonism)" [6].

The paramount role of interacting with the environment via "duplex communication line", namely both "speaking" (speech acts, directives) and "listening" (paying attention, reacting) was uncared for. Though, it was not ignored, as the following quotations from [2], in turn abridging quotations from previous author and teamwork, shows: "designing services instead of products, involves parallelism, hence a powerful temporal dimension", "the main weaknesses of current IT systems [...] stem from inappropriate conceptualising, based on rigid, algorithmic (i.e., deterministic, almost sequential, "computational", and atemporal processing), meant for decision making as "step by step solving of arising subproblems", not for decision making as "continuous process of dealing with unexpected, potentially risky, fast changing situations requesting immediate albeit not optimal response" [2].

Moreover, the other important software mechanisms proposed in [2], were also lost when the task of interacting with the environment was delegated to a dubious interface agent: a) the multifunctional analog input bar lost its meaning being downgraded to a trivial slider illustrated by a toy problem (not a toy process); b) "RETURN -1", the only properly implemented important service-oriented mechanism, was too lonely to be able to save validation. It was too little (as engineering fact), too late (to be convincing in an - albeit only in background - product-oriented setting).

2.3.3. Final Blow for Validation: Simulated Simulation of Interface Agent

"Simulated simulation" refers to a second degree simulation: a) The interface agent got the (hard to fulfil) task to simulate the real-world unexpectedness, unavoidable in any nontrivial service-oriented application. The task became impossible to perform when validation of non-algorithmic software was at stake. b) Simulating the simulator was just as to give "la suerte suprema" to an already heavily bleeding bull.

Thus, the lesson learned refers to the (il)legitimacy of simulation per se and is so strong that some redundancy with the pseudo-algorithm portrayal (2.1.3) is excusable:

It is easier - and not at all risky - to simulate rather non-algorithmic software replacing (in debatable "tacit knowledge"), programs (inherently and overtly algorithmic) by scripts (inherently and covertly non-algorithmic). Indeed, tags (and mostly mark-up languages as
a whole) are not perceived as outside, (macroscopically) nondeterministic - sometimes arbitrary - intervention, but as "normal program instructions" (forgetting that a script has nothing in common with a Turing machine). What is more, a decade after giving up flowcharts, most syllabi do not consider necessary to explain that "compiling" and "interpreting" are distinct IDE procedures - some do not explain fully the "D" in DLL, neither.

On the other hand, for research in software engineering - above all when uncertainty and chaoplexity are involved - it appears that "I" in IDE stays yet for "inadequate" rather than for "integrated". Thus, except very improbable "avatars meeting in kiosks" (perhaps just a commercial label for a teleconference), software mechanisms offered by API functions currently available in 32-bits platforms, are unable to implement convincingly "avatars as alter ego". Thus, why trying to develop agents beyond the level of soundly programmed interface agents (based on pseudo-algorithms), (inter)acting as a usual secretary?

In short, in engineering - above all in exploratory research - simulation is unacceptable at architectonic level (where features that cannot be emulated, should be given up) and inexorable at structural level (where deficient language syntax should be circumvented).

THIRD CHAPTER: LESSONS APPLIED (TREATMENT)

Validating Transdisciplinary Service-Oriented Research

"Treatment" is here in its both meanings: "cure" and "action": After trying to interpret [1] in depth, dissecting the requirements (3.1), and to set up what it means to follow the prescripted cure (3.2), the entailed action is outlined: new course in the new context (3.3.)

3.1. Dissecting the Requirements

To single out the requirements, three significant phrases in [1] are interpreted (in order of increased specificity), starting from the lessons learned and reshaping them into a framework to address the problems exposed by the diagnosis above. They refer to: "emphasise clearly the thesis contributions" through validation (3.1.1), based on "scientific methodologies and engineering methods" (3.1.2) that are "generally accepted" (3.1.3.)

3.1.1. "The thesis is insufficiently supported as regards validation"

The "increased specificity" has to be applied from the very beginning: the circumstance that the thesis pertains to computer science adds rigour to the claim "to emphasise clearly the thesis contributions" [1]. In fact, that means: a) [2] has engineering research contributions to be emphasised; b) these contributions are explicitly in service-oriented transdisciplinary research; c) implication: the contributions are embodied in software engineering mechanisms; d) the mechanisms essentials for proving the thesis ideas failed to be validated. The immediate causes were identified as: a) irrelevant application domain (2.1.3); b) disregarding the effects of Moore's Law (2.2.2).

Coalescing the factors above, to avoid repeating failure, a careful blending of "Models of Innovation" [16] is necessary: "Each model postulates one single explanatory factor ("scientific or technological discovery" versus "customer or management need"), [...] scientists and in-house R\&D necessarily drive innovation (science or technology-push)" [16]. Since any PhD engineering research is assimilable to "in-house R\&D", the contradiction between perspectives becomes obvious: to be relevant, transdisciplinary research must be user-pulled; to allow undisputable validation, it must be technology-pushed. In practice, user-pulled means that the research domain should: a) be of definite economic concern or social priority; b) involve systems and environments to be dealt with, too chaoplex for existing modelling approaches (current models are either too simple or too complicated); c) require urgent exploratory research. Likewise, technology-pushed means that the mechanisms to be validated should be expressly developed for proving: a) soundness of thesis ideas; b) relevance to the systems to be modelled.

In short, too chaoplex and chaoplex enough means, from the "user-pulled" stance, challenging chaoplexity and avoiding the "solution in search of a problem" syndrome. From the "technology-pushed" stance it means more: what kind of method(ologie)s can be used.

3.1.2. "Scientific Methodologies and Engineering Methods"

Simplifying the meaning of "methodology" to "meta-method", in short, "scientific methodologies" means rigour, and "engineering methods" means facts. Scientific rigour means - for [2], focused on "technology-pushed" - to consider the lessons learned from 2.2 and 2.3 (in brackets are very abridged hints to causes). Thus, the software mechanisms should be:

- Applied in transdisciplinary exploratory research. (Moore's Law makes futile any attempt to develop software useful as research tool in other domains, above all when aimed at incremental research, 2.2.3.)
- Incorporated in a service-oriented tool(kit). Moreover, the service should be certified by user researchers twice: at the beginning as being of non-trivial interest; at the end that the engineering embodiment of the service (previously agreed upon) is operational. (Any appliance shaped without user consultancy is prone to failure, 2.2.2, 2.3.1.)

Likewise, as engineering facts, the same software mechanisms should be:

- Relevant to the ideas they have to illustrate. No significant architectonic feature can be convincingly defended if simulated. (If no IDE suitable for non-algorithmic software is available, the solution is to emulate the feature, not to simulate it, 2.3.1, 2.3.3.)
- Innovative for transdisciplinary research. Since modelling is the main area were this requirement can be fulfilled (maybe, the only at hand), in practice that means that the mechanisms were crucial for modelling systems/processes/environments where existing models failed chronically to satisfy user research expectations. (If the mechanisms are new but marked no visible advance in user research, than they are not successful engineering facts, 2.3.2). In other words, the mechanisms have to prove concepts. The proof involves new validation methods, but subject to the restrictions below

3.1.3. "Generally Accepted/Used" Methods

Within the conventional paradigm, prevalent in the industrial era, quantitative validation (including quantitative testing) is perceived rather as pleonasm than as reference to a validation species. Moreover, qualitative validation is seen as a dilution (totally non-engineering in spirit) of the very validating process. Hence, only quantitative procedures are "generally accepted" as engineering methods. Apparently, the post-industrial era is not yet conceptually established, although most leading world economies entered this era, over a half a century ago. As a result, there is no theory of value for service-oriented economies, hence no metric to assess service quality, neither. Thus, for practical reasons, engineering has to keep on weighing services with validation methods developed for products. Corollary: the requirement to validate service-oriented software, via quantitative testing is justified.

On the contrary, avoiding quantitative testing would involve a "petitio elenchi", the (informal but deceiving) fallacy of begging the question. Indeed, the implicit premise ("post-industrial engineering involves non-algorithmic software mechanisms because it is service-oriented") would directly entail the conclusion ("service-oriented software mechanisms should not be validated by product-oriented methods - despite being still the
only generally accepted ones"). The fallacy must be avoided finding characteristics (expressing well defined and user-accepted semantics) that are able to be relevantly validated as magnitudes (i.e., tested quantitatively) in line with generally accepted product-oriented methods.

Even inherently holistic, highly subjective, elusive features as anthropocentrism should be validated by quantitative testing, albeit indirectly (for instance, testing a quantifiable significant aspect of simplicity, regarded as main manifestation of user-centeredness. Though, to get user acceptance, such testing can hardly replace negotiating every interface component with the end user (preferably, applying the Scandinavian method.

3.2. Following the Requirements

In line with the interpretation in 3.1, the requirements are restated to be fit for setting up the approach in 3.3. This requires changing the perspective after failing to validate thesis contributions (3.2.1). From this stance, the concepts and approaches to be emphasised (in modelling) as well as the mechanisms to be demonstrated are stated in 3.2.2 and 3.2.3, respectively. Next, choosing a research domain fitting with "Proof-of-Concept" Validation becomes rather easy (3.2.4).

3.2.1. Changing the Perspective after Failing to Validate Thesis Contributions

To prove that the lessons have been fully learnt, the thesis contributions to be unambiguously mirrored by a validated application should be selected carefully, avoiding ideas (in parentheses are given some of the most frustrating examples) that are: a) irrelevant (from a leading paradigm stance) for non-algorithmic software (semiotic-oriented software engineering, interface agents); b) relevant per se but are not supported by affordable programming environments and, hence, become irrelevant when they are simulated (agent-orientation, "precision is often needless", "precision is sometimes dangerous").

On the contrary, key ideas wiped out by the failed experimental model (chaoplex situations cannot be managed using deterministic software, semantic validation through analog /approximate data input, uncertainty expressed through trivalent $I F$, anthropocentric interfaces), should be considered from the very beginning in the application design space - even if lacking API entail their partially simulated reflection in the implemented software (exception handling, dynamic exception propagation, irreversibility expressed by Bergsonian time (BeTi)). Thus, the perspective has to be refined, avoiding any weak link in the following (informal) chain of inferences:

- Non-algorithmic software is believable only when modelling chaoplex processes.
- Chaoplex processes are worth to be modelled only in transdisciplinary applicative research, in a leading-edge domain, with high: a) economic significance; b) social priority.
- Transdisciplinary modelling requires GST as: a) Lingua Franca; b) metascience. A fortiori, modelling living systems requires cybernetics.
- CybMd are most relevant to living systems in dynamic environments.
- Sensibly, that means that challenging biologic problems require CybMd.

3.2.2. Concepts and Approaches to be Emphasised in Relevant Modelling

In line with the above, the selected contributions are grouped into two categories: the sine qua non, resumed below and the desirable ones, taken into account in the approach (3.3):

- Bounded rationality: as both strategy and mechanism for urgent decision-making in high-risk situations, based on severely incomplete information.
- "Just in Time": as key requirement for any service providing (in the post-industrial era). Hence, a fortiori for (nontrivial) modelling as transdisciplinary service.
- "BR + JIT". The synergistic effect due to merging the two thesis pillars is obvious when simplicity seen as output of bounded rationality meets urgency seen as input (mostly, even raison d'être) of "Just-in-Time". The effect is even more relevant when applied to modelling (e.g., the success of discrete-time modelling is irreducible to just one of them)
- GST as: a) Lingua Franca (living systems cannot be investigated without it). b) scientific infrastructure for Cybernetics (crucial processes - for instance, reaching/maintaining stability of living systems - cannot be modelled without it).
- Transdisciplinarity. Is essential since, otherwise, any research in Computer Science could be regarded as "solution in search of a problem" (3.1.1).
- User-centredness. Anthropocentric interfaces are vital in reducing cognitive chaoplexity and in hiding structural chaoplexity (otherwise, wide acceptance is lacking).
- "Precision is useless" and "Precision can be harmful". From validation stance they can be regarded as outcome of " $B R+J I T$ " (shown in the slider for analog input).

3.2.3. Mechanisms to be Demonstrated via "Proof-of-Concept" Software

Being assessable only incorporated in functional applications, mechanisms are main prey of any kind of validation failure. Thus, the perspective has to be refined more carefully than above. The factors (including circumstantial ones) hindering mechanisms validation are:

- User-validation is difficult in transdisciplinary research because mechanisms are structural components, not architectural features. Moreover, anthropocentric design requires that they should be hidden by the interface. (Paradoxically, a mechanism noticed by the end-user signals unsuitable design, mainly a poor interface.)
- Conceptual confusions could distort seriously the validation process. The most dangerous is described in detail in 7.1.1 but there are others too (e.g., "pseudo-algorithmic programming", 2.1.3).
- Software mechanisms are the core of engineering research in [2]. Thus, refuting the utility or even the very existence of non-algorithmic software (2.1.1) could be bewildering for validation evaluators, since such mechanisms, non-algorithmic par excellence must be validated against their nature, namely using algorithmic testing (7.2).
- Structural chaoplexity. The reasons for chaoplexity (3.1.1, 3.2.2) refer mainly to its cognitive component. Though, its structural component is also necessary: to be relevant as test bench, the system to be modelled has to be inherently chaoplex. Accordingly, the approach (3.3) involves the development of new mechanisms - integrating those proposed in [2] - requiring validation for themselves.

Hence, the mechanisms to be validated (through quantitative testing, AV2) are those carried out for ecologic modelling (5.2, 5.3), implemented in the appliance (6.3, 6.4), and assessed according to PoC validation (7.1).

3.2.4. Choosing a Domain Fitting with "Proof-of-Concept" Validation

"A proof of concept [...] is a realization of a certain method or idea to demonstrate its feasibility, [...] or a demonstration in principle, whose purpose is to verify that some concept or theory has the potential of being used. A proof of concept is usually small and may or may not be complete [...] In engineering and technology, a rough prototype of a new idea is often constructed as a "proof of concept". For example, a working concept of an electrical device may be constructed using a breadboard. A patent application often requires a demonstration of functionality prior to being filed. [wikipedia.org/wiki/ Proof_of_concept].

A recent (2012) example [33] from an authority (Los Alamos National Laboratory) highly professional branch (Engineering Advanced Studies Institute), in the spirit of SOE ("Potential Collaborative Research"), in a most sensitive domain ("with Korea's Agency for Defense Development") suffices to show the power of: this concept in action: "Invite innovative graduate student and postdoctoral researchers [...]. ~3 week duration. [...]. Develop a lecture series to catch bring researchers up to speed on multidisciplinary problems of interest to the laboratory. Research high-risk, forward thinking concepts. In some cases try to develop prototype, proof-of-concept demonstrations or models" [33].

In short, the power of the method is manifest iff chaoplexity is the spinal cord of a robot-portrait of the research domain looked for. The search area was narrowed further to a subfield involving chaoplex biologic problems, where modelling requires cybernetics. In such fields chaoplexity is both cognitive and structural fitting with the requirements. (Besides, in biology structural chaoplexity "seems macroscopically" to be irreducible; 4.2.1).

Thus the role of the (transdisciplinary research) user - important anyhow - becomes paramount. Here the circumstances where decisive in finding an on-going ecologic research aiming at Preservation of Ecological Systems. (Applied to benthic communities in Transylvanian lotic systems, the research was in the phase when gathering data about biodiversity was completed and a model for system stability was badly needed, 3.3.1.).

To keep the end-user role, as protagonist in SOE (even in the new situation of PoC validation), the appliance functionality should be concentrated in the interface. Moreover, the interface is designed as workhorse tool for ecologic research, focused on setting up WISC aimed at preservation of (oversimplified) ecological (sub)systems (within the research project mentioned above, 4.3.1, 6.2.4, 7.3.3, 7.3.4)

As a result, "Preservation of Ecological Systems" appeared as a research subfield that fits very well the traits of the robot-portrait. It was chosen for PoC validation.

3.3. New Course in New Context

The new approach resulted from adapting to new conditions (3.3.1) and (re)adapting to the (widening) paradigm gap (3.3.2). The inferences from lessons (Chapter 2) and requirements $(3.1,3.2)$ are stated in defending the orientation of the next three chapters (3.3.3). Changing the perspective, the same chapters could be regarded now not as a plain extension of [2], but as self-contained research, proposing a new subbranch of modelling, maybe entitled "Non-algorithmic cybernetic modelling of living systems" (3.3.4).

3.3.1. Adapting to New Conditions

Adapting was influenced by repeatedly changing circumstances and, mainly, by their effect on the approach. Two factors (commented upon in 1.1.2) had major impact in shaping the new course (3.3.2): a) Interrupting the common research with [7]. b) Suspending the application aiming at preservation of ecological systems.

Paradoxically, both factors had also substantial positive outcome:

- Learning and applying the now usual way of validating transdisciplinary research via PoC applications (3.2.4, 4.1.4).
- Realising that the application mentioned above was far too chaoplex, as well as oversized in scope and aim, to allow suitable modelling, applicable in due time, with research resources affordable at a medium-sized East-European university, even with West-European sponsorship (State of the Art, 4.2.1, 4.2.2).
- Realising that even the downscaled application "Homeostasis in Benthic Communities Modelled Via GST" is too challenging to be developed as PoC application.
- Realising that living systems require CybMd (4.2.3) and its corollary: non-algorithmic software, despite unavoidable, must be implemented with outworn IDEs.
- Corollary: the new course is substantially more relevant to both illustrating the thesis concepts and approaches (Chapter 6) and to engineering research, via two original mechanisms that proved their utility in transdisciplinary research (Chapter 5).

As a result, from here on the whole $A D T$ architectonic was changed, as shown below.

3.3.2. (Re)Adapting to the (Widening?) Paradigm Gap

"Interfacing science and policy raises challenging issues when large spatial-scale [...] environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty [...] Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making [...] In WSTMe, the characteristic heterogeneity of available spatial information (a) and complexity of the required data-transformation modelling (DTM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. [...] This challenging shift toward open data [...] and reproducible research [...] is also strongly suggested by the potential - sometimes
neglected - huge impact of cascading effects of errors [...] within the impressively growing interconnection among domain-specific computational models and frameworks" [59].

This relevant paper was not cited in the numerous "States of the Art" below, but here because it stands for the decisive motive to give up any hope that in the next years there could be accessible IDE for non-algorithmic software as a whole or just for its crux, exception handling. The polyvalent, multifaceted, and consequential reason follows:

- authored by highly professional transdisciplinary researchers,
- endorsed by authorities like the European Commission, Joint Research Centre, Institute for Environment and Sustainability or the United Nations World Food Programme.
- presenting "an awesome battery of free scientific software" to "exploit advanced geospatial modelling techniques"
- approving that "complexity [...] should not be intended as an excuse for obscurity"
- accepting that approaches "of computational science or of policy-making [...] may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe)",
- referring new branches of science like "post-normal science" or "emerging engineering" (aiming at easing that kind of problems),
- calling for "paradigm shift in how computational science supports [...] integration"
- considering uncertainty "within a context of modelling complexity and multiple sources of uncertainty" and relating the "sources" to "post-normal science" from "a post-normal perspective"
[59] disregards all transdisciplinary assumptions for modelling living systems (4.2.3) as proved by what is ignored in the paper (for instance, neglecting the possibility that uncertainty could stem from "lack of occurring" in a dynamic environment).

Thus, three key concepts related to evolution appear only once in irrelevant context: "process" (in a Journal title), "time" (in "scattered time series", referring to "geospatial data"), "temporal" (in "temporal resolution" referring to "remote sensing"). Emphasis is only on "the characteristic heterogeneity of available spatial information".

Therefore the desideratum "to better communicate part of the policy-relevant knowledge, often difficult to transfer from technical WSTMe to the science-policy interface" is far to attain. Moreover, as regards non-algorithmic software - or just a suitable temporal dimension in modelling living systems - , there is no soon paradigm shift in sight.

3.3.3. Defending the New Orientation of the Next Three Chapters

As new ADT core and also as significant transdisciplinary extension of [2], the three following chapters are outlined from a fresh (threefold) perspective - albeit in an old Matryoshka doll shape. The three perspectives are hinted at in Figure 3.1 and are leitmotif of the next chapters. Thus, they are worthy of a thorough explanation at the beginning of Chapter 4 where the bridge (suggesting only transdisciplinary research perspectives) is replaced by three step-pyramids portraying in detail the role of each doll, from each perspective. Then, why this prolegomena here? Because the self-contained research in cybernetic modelling of living systems (3.3.4) condensed in the next chapters should be
judged upon with the bridge in mind: the Matryoshka structure is necessary for validation but the transdisciplinary architecture is paramount.

Figure 3.1. Threefold perspective of (non-algorithmic) cybernetic modelling.
For the next chapters " $U($ ser $)$ " means researcher in biology/ecology (sub-perspectives are given in 6.3.3). "Non-algorithmic" is placeholder for "macroscopically nondeterministic" (being more palatable within old paradigms, 2.1.1, 2.2.2). It will be employed for pragmatic reasons, mainly in the syntagm "non-algorithmic software" (necessary from both PrsADT and PrsCSIT), and is put in brackets as it is useless from PrsU (users are interested neither in the intrinsic software nature, nor in philosophical debates about determinism). For similar (memetic) reasons, "process-oriented" will be employed instead of "agent-oriented".

3.3.4. Non-Algorithmic Cybernetic Modelling of Living Systems

Focusing on modelling homeostasis as transdisciplinary extension aiming to validate [2], the undertaking reached (through serendipity) another architectural status. Since the following chapters have to remain integrated in the initial architectonics, the new stance can be outlined only from outside them. Thus, below, each main motivation of non-algorithmic CybMd is followed by citing a most recent (2013), focused (process-system engineering), and effectual (successful CybMd with significant results in biology and biotechnology) reference [41]. Since the posture in [41] is one of mechanistic modelling the quotes cannot be supposed to be biased and show that the modelling proposed in the following chapters is a distinct new subfield of CybMd (itself a novel field of modelling).

- CybMd is necessary in the case of living systems. ("Considering the developments in analytical and molecular biology over the past decades brings [the] argument that the development of mathematically and computationally orientated research has failed to catch up with developments in biology. Mathematical biology today revolves around mathematical expressions developed a hundred years ago [...] Notable studies attempting to introduce a new approach to biological systems modelling include, but are not limited to, cybernetic modelling".)
- Processes in living systems are chaoplex at any level. ("The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems.")
- Boundedly rational approaches are necessary because cognitive chaoplexity is vast. ("with the field of biotechnology shifting from method development to application development [...], a systems biology approach of detailed, mechanistic modelling becomes problematic since modelling of complex biological systems inherently is an inverse problem that cannot be solved [...] and understanding of experimental information has lagged far behind data accumulation".)
- CybMd needs much simpler mathematical tools. ("the sophisticated mathematical toolset that led to the explosive growth of manufacturing capacity in traditional chemical industries known as Process Systems Engineering (PSE), is not readily applicable to the bio-industry. Obstacles hindering the adaptation of traditional PSE approaches to bio-processing include the complexity of the biological systems, the limited understanding of the biological processes, and the resulting lack of adequate process models".)
- Atemporal models are unsuitable for living systems. ("Various studies presented in the past few years have focused on dynamic modelling of genetic circuits [...]. As the function of a greater portion of the gene control network is clarified, it will be possible to apply mechanistic mathematical models that describe the dynamics in key regulatory systems for the design of optimal bioprocesses").

FOURTH CHAPTER: NEW MODELLING SUBBRANCH

Non-Algorithmic Cybernetic Modelling for Biology
The framework, together with the start vector are presented first (4.1). Since the top-down rationale is based on fighting cognitive chaoplexity (4.2), it entails a practical bottom-up approach, trying to support researchers, "Just-in-Time", with effectual and user-friendly workhorse research instruments (4.3).

4.1. Matryoshka Doll Framework and Start Vector

To prove that the subfield of CybMd, chosen as applicative research domain for validating software mechanisms, is suitable also from a pragmatic SE viewpoint, it must lead easily to a convenient Matryoshka doll validation framework, adequate also to house a research toolkit (4.1.1) serving as PoC appliance. In this light, the start vector - that has to mirror from all perspectives the robot-portrait sketched in 3.2.4 - is based on three types of traits, labelled (in order of increasing flexibility) as premises (4.1.2), criteria (4.1.3) and desiderata (4.1.4). However, from a transdisciplinary viewpoint, the order is of decreasing priority.

4.1.1. Research Toolkit in Matryoshka Doll Shape. Three Perspectives

The reasons for this nested modular shape are given, below, the first being decisive:

- PrsADT. The very idea of Russian dolls secures validation: if the outermost Matryoshka is attested, all the others are attested too. The dolls are taken "out of the box" to identify clearly each mechanism to be validated.
- PrsCSIT. The CSIT language implied by the modular framework conveys better the links between the mechanisms and the thesis contributions they have to support.
- PrsU. Empathising with the end-users, by trying to utter the topics in a (quasi)ecologic language, it is to expect that researchers will devise more suitable WISC.

Figure 4.1. Exploring homeostasis (with hysteretic delay) in living systems.

Figure 4.2. Exploring stability of chaoplex systems (in discrete time).

Figure 4.3. Exploring preservation of (simplified) ecologic systems.

The dolls are regarded from each perspective in Figures 4.1-4.3, but not as Matryoshkas because the step-pyramid arrangement: a) allows easier readable text; b) encourages to put the dolls on a postament (the appliance) and to cover them with a (conceptual) umbrella; c) suggests chronological order; d) for Figures 4.2 and 4.3 it suggests also X-raying the two transdisciplinary research bridge pillars in Figure 3.1.

4.1.2. Premises to Start from

As fundamental and set up in advance requirements, they are sine qua non in the very meaning of the phrase: without fulfilling these prerequisites, the undertaking is fruitless. Here, they refer to three underlying features of non-algorithmic software (i.e., non-algorithms) that must be compellingly reflected by the mechanisms. To impair stiffness, they are shrunk to three. To increase clarity they are stated in three terminological formulations, reflecting the stakeholder stance: user (PrsU), designer and implementer (PrsADT). (To defend the user position, the order is of decreasing importance from a SOE stance.)

- Application Domain Language. Here, this means the terminology familiar to ecologists as service beneficiaries (model end-users). Obviously, users consider that any model should reflect at least three basic features of biologic systems: a) they evolve in time; b) they react to environment stimuli; c) as a result, they have to face uncertainty.
- Transdisciplinary Language. This is the vital bridge between user requirements and model suitability (4.2.1, 4.2.2). It is the task of post-industrial engineers to set up a common linguistic denominator: some concepts are eliminated (e.g., after a scrutiny based on [5], the term "biocenosis" was replaced by "ecologic system"), others have their meaning (and use) revisited (e.g., "predictable model", 4.2.2). In order to act as essential design-space dimensions, they are stated as: a) the evolution of biologic systems must be modelled as process taking place in BeTi (4.2.4, 5.1); b) system reactivity to environmental perturbations should be modelled to ensure homeostasis; c) uncertainty cannot be modelled using time series (decision making based on future contingency should be considered - at least - to try to reduce major effects of unforeseen anthropogenic disturbance).
- Computer Science Language. In line with 3.2 and 3.3 the language must be that of conventional SE. Thus, despite being intrinsically non-algorithmic, the software described in Chapter 5 avoids any reference to new paradigms or to ambiguous concepts. As a result, the premises become: a) temporal evolution should be reflected by inputting data based on repeated measurements in the same places (e.g., of a lotic system) rather than expressing extended spatial distribution (4.3.3); b) reactivity should be implemented responding to interrupts via exceptions, not by frequent polling (6.3.2); c) uncertainty should be dealt with using only mechanisms implemented in Windows32 API [19] (6.3.1, 6.3.2).

4.1.3. Negotiable and Adjustable Criteria

Unlike premises, they are both negotiable (with the end-user) and adjustable (during the design process). Here they embody the flexible traits of the robot-portrait (3.2.4) starting with the most concerning features for ecologists: system intrinsic complexity (4.2.1), reflected by the model (most models are disappointing, 4.2.2). However, the degree of chaoplexity is set up by three factors depending on user acceptance: a) manageable user-perceived model (cognitive) complexity; b) satisfactory reduced (structural) complexity (via bounded rationality); c) tolerable deadline for ("Just-in-Time") model implementation. (Of course, the last two are strongly related - a leitmotif of [2], 4.3.)

- A) At least the following facets of chaoplexity should be significantly illustrated by a CybMd: a) a negative feedback loop furthering homeostasis (4.2.3); b) corollary: since this loop cannot be conceived in atemporal space, a (Bergsonian) time dimension is unavoidable (4.2.4); c) intensely dynamic (uncertain) environment (4.2.3).
- B) As less simulation as possible when implementing system reactivity (6.3.2).
- C) As much "Scandinavian method" as possible when designing the interface (4.3.1).
- D) As simple time model as possible (5.1.2, 5.2.3).
- E) Circumstantial criterion: make the most of the available data warehouse. From PrsU, the criterion is essential since (because of poor modelling), several (eco)system parameters and relations - crucial for controlling its evolution - are either (at least partially) unknown or ineffectually reflected by the model (4.3.3).

4.1.4. Desiderata. Why "Proof-of-Concept" Applications?

From PrsADT, they are in fact (less important) criteria but they are in a separate category to avoid any possibility to interpret the choice made in 3.2.4 as "solution in search of a problem". Moreover, the topic is unavoidable because of two desiderata: one that seems unfulfillable (but needs mentioning), and one that seems surprising (hence, needs justifying).

- Suitable IDE. Since non-algorithmic software is still neglected, an appropriate IDE is chronically non-existent. There is not yet even a non-integrated programming environment allowing genuine exception handling (3.3.2, 5.1.3, 6.3.2). However, a legitimate request should be evoked - at least - as "wishful thinking". Likewise, the non-existence will be proved (again) before choosing alternative software solutions (6.3.1).
- Why "PoC" Applications? From PrsADT, the desideratum is sufficient for validation but not necessary (e.g., in "Plan A", 1.1.2). On the other hand, from PrsU, it seems rather undesirable to reduce the scope of an application to prove concepts instead of a full scale, tailor-made application. The apparent paradox is solved by a straightforward exercise of resource management:

Some universities have proof of concept centres to "fill the 'funding gap" for "seed-stage investing" and "accelerate the commercialization of university innovations". PoC centres provide "seed funding to novel, early stage research that most often would not be funded by any other conventional source" [17]".

In short, because of resource (un)availability it is mandatory to set up a demanding compromise between improving application performance and deadlines. Hence, for the sake of "Just-in-Time", a PoC application is desirable from all perspectives.

4.2. Rationale: Fighting (Cognitive) Chaoplexity in Biologic Research

The main concerns stated in 4.1.3, are interrelated in biologic modelling: chaoplexity (4.2.1), limitations of current models (4.2.2), and unavoidability of a (Bergsonian) time dimension (because of impact, scope, novelty, and (mechanism) design consequences, it needs a separate subchapter, 5.1). Each is endorsed by a focused "State of the Art". From here assumptions for cybernetic modelling (4.2.3) are inferred.

4.2.1. Chaoplexity, Main Hurdle in Biologic Modelling. State of the Art

In the subchapter title "Cognitive" is in parentheses to suggest that both other options are misleading: a) "Fighting Cognitive Chaoplexity" could imply that structural chaoplexity is of no concern. b) "Fighting Chaoplexity" could imply that structural and cognitive chaoplexity are similar (unlike in robotics, in biology structural chaoplexity is - here and now irreducible per se; though, through boundedly rational modelling, it can be, at least partially, hidden, reducing thus the cognitive component).

Chaoplexity is understood as stated in [2] and employed in [5]. Thus, in the State of the Art it is referred to as "(intense) complexity". In fact, complexity is the main motivation of CybMd: "the concept behind cybernetic modelling is the adaptation of a mathematically
simple description of a complex organism which is compensated for oversimplification by assigning an optimal control motive to its response" [41].

Though, "close examination reveals that commonly applied definitions of complexity fail to accommodate some key features of ecological systems, a fact that will limit the contribution of complex systems science to ecology. [F]eatures of ecological complexity such as diversity, cross-scale interactions, memory and environmental variability - [...] continue to challenge classical complex systems science. Further advances in these areas will be necessary before complex systems science can be widely applied to understand the dynamics of ecological systems" [8].

As regards the chaoplexity inherent to ecologic systems, an excerpt from [5] is relevant: "ecological chaoplexity is still a challenge, despite the increasing computer power, versatile software instruments (above all for modelling and simulation), and unrelenting research efforts [...] [46], presenting a state-of-the-art of (explicit) ecological models, emphasizes "the need for developing mixed methods based on a combination of various reduction techniques to cope with the spatio-temporal complexity of real ecosystems including processes taking place on multiple time and space scales" because "the construction of analytically tractable mean-field models is becoming a key issue to provide an insight into the major mechanisms of ecosystem functioning." [46]. Telling is the focus on understanding the modelled phenomenon (implying that current modelling is far from satisfying the needs): [47] proposes a new theory: "Scale transition theory is an approach to understanding population and community dynamics in the presence of spatial or temporal variation in environmental factors or population densities. It focuses on changes in the equations for population dynamics as the scale enlarges. [...] Scale transition theory more generally, however, does not aim to have fully analytical solutions but partial analytical solutions applicable for circumstances too complex for full analytical solution. These partial solutions are intended to provide a framework for understanding of numerical solutions, simulations and field studies where key quantities can be estimated from empirical data." [47]. In [48] the criticism is even stronger: "Establishing a direct link between individual based models and the corresponding population description is a common challenge in theoretical ecology. Swarming is a prominent example, where collective effects arising from interactions of individuals are essential for the understanding of large-scale spatial population dynamics, [...] and where both levels of modeling have been often employed without establishing this connection" [48].

4.2.2. Major Limits of Current Biologic Modelling. State of the Art

Here are only topics regarding the limits of (cybernetic) modelling in biology as a whole, (caused by both chaoplexity components) focusing on ecologic stability (even more focused references are cited in 5.3.2):

A boundedly rational approach follows (recently, April 2013) [31]: "Ecological stability is touted as a complex and multifaceted concept, including components such as variability, resistance, resilience, persistence and robustness. Even though a complete appreciation of the effects of perturbations on ecosystems requires the simultaneous measurement of
these multiple components of stability, most ecological research has focused on one a few of those components analysed in isolation. Here, we present a new view of ecological stability that recognises explicitly the non-independence of components of stability. This provides an approach for simplifying the concept of stability. We illustrate the concept and approach using results from a field experiment, and show that the effective dimensionality of ecological stability is considerably lower than if the various components of stability were unrelated. However, strong perturbations can modify, and even decouple, relationships among individual components of stability. Thus, perturbations not only increase the dimensionality of stability but they can also alter the relationships among components of stability in different ways. [T]he multidimensional stability framework that we propose gives a far richer understanding of how communities respond to perturbations" [31].

To put it in its larger ecologic context, the Stanford Encyclopedia of Philosophy [21] is the best source; hence, a long quote: "As with population ecology, what is of most interest [...] are the changes in a community over time. This brings us to one of the most interesting - and one of the most vexed - questions of ecology: the relationship between diversity and stability. A deeply rooted intuition among ecologists has been that diversity begets stability. If this claim is true, it has significant consequences for biodiversity conservation. [...] [A]lmost every community experiences significant disturbances. With this in mind, stability has been variously explicated using a system's response to disturbances or its tendency not to change beyond specified limits even in the absence of disturbance. [...] How do any of these measures of stability relate to diversity? The only honest answer is that no one is sure. If diversity is interpreted as richness, traditionally, it was commonly assumed that diversity is positively correlated with at least persistence. However, there was never much hard evidence supporting this assumption. If stability is interpreted as a return to equilibrium, mathematical models that should answer questions about stability are easy to construct but hard to analyze unless the system is already close to equilibrium. [...]. The most systematic analyses performed so far give no straightforward positive correlation. [...] It was once believed that natural ecosystems are usually at equilibrium (the "balance of nature"). [...] But ample empirical data now suggests that this assumption is almost never correct: natural ecosystems are usually far from equilibrium [...] Moreover, if natural selection between species occurs during the transition to equilibrium, equilibrium communities will be less rich than those that are yet to reach equilibrium. On short time scales (short enough to make speciation unlikely), selection between species that utilize the same resources (that is, they occupy the same "niche") will lead to the exclusion of the less fit by the more fit through "competitive exclusion." [...] The eventual equilibrium community, one in which selection would no longer be acting, the (controversially) socalled "climax community," is necessarily less rich than those that temporally preceded it" [21].

4.2.3. Assumptions for Cybernetic Modelling

From the general principles of cybernetics [25] - and supported by the wide-ranging, twofold, "State of the Art" above as well as those in 6.1 and 6.4 - the transdisciplinary assumptions below are inferred, aiming at CybMd of living systems (some of them are adapted from [14]):

- A) Any subsystem is a system but the two concepts are not synonymous; in practice, when systems are too complex, subsystems should be taken into account.
- B) Ecologic systems are - at least macroscopically - nondeterministic and open (i.e., even statistical determinism is irrelevant).
- C) "Ecologic systems are chaoplex. Chaoplexity is both cognitive (main parameters, processes, and relations are unknown) and structural (there are very many species and environment features)" [14].
- D) "The key relation between diversity and stability is chaoplex and is not yet suitably modelled (ecologic stability can refer to several attributes: resilience, persistence, etc.)" [14]
-.E) Processes cannot be modelled atemporally. Processes within a living system require irreversible time - at most simulated through closed reversible time [14]. (As foundation of non-algorithmic CybMd, it is elaborated upon in 5.1.)
- F) Cybernetic perspective: Homeostasis (as key species of stability) is neither fixity nor thermodynamic equilibrium; it is outcome of a (negative feedback) process.
- G) Biologic perspective: Homeostasis (as key species of preservation) is the state of a living system resulting from an adaptation process triggered by a perturbation in its dynamic and uncertain environment [14].
- H) Uncertainty cannot be effectively modelled presuming that future evolution will merely extrapolate the past (for instance, using time series).
- I) Predictive models predict synchronically not diachronically. "Such models are useful for diagnosis not for prognosis" [14] (6.2.2).
$-J)$ To predict evolution, temporal information is unavoidable [14] (4.3.3, 6.2.2).
In spite of this chain of restrictions, the assumptions above allowed setting up the operational CybMd of homeostasis with hysteretic delay in the next chapters.

4.3. "Just-in-Time" Approach: Modelling as Workhorse Tool in Research

Modelling homeostasis endorsed all three ways "Just-in-Time" is reflected in software design: a) beneficial side-effect of bounded rationality (anthropocentric multifunctional analog (fuzzy) interface, 4.3.1); b) crucial for the synergystic effect of merging it with bounded rationality "BR + JIT" (microchronic CybMd is sine qua non in biologic research, 4.3.2); c) in its own rights, as (post-industrial) approach to the Toyota production system [2] (from spatial data to temporal information, the undesired example, 4.3.3).

4.3.1. Anthropocentric Multifunctional Analog (Fuzzy) Interface

As underlined in [2], for the end user there is no application, there are only features accessible through the interface. Thus, here the user perspective is considered first:

- PrsU. The interface is, in fact, the very appliance. (Its importance grew after the failure of Plan A, since it became workhorse tool. That is why the "Scandinavian method" is so useful to realise user-centeredness, 4.1.3, 4.1.1.)
- PrsADT. The interface should validate the first mechanism proposed in [2], "multi-functional input bar, based on fuzziness, computing with words, cognitive psychology, non-algorithmic software and semantic validation". (An interface that is not perceived as "anthropocentric enough" is unable to hide structural chaoplexity.) By serendipity, this bar proves also another thesis idea: "Precision is useless".
- PrsCSIT. The meaning of anthropocentric interfacing is condensed in a chain of implications: reducing chaoplexity \rightarrow proficient human-computer interaction \rightarrow user-friendliness \rightarrow human-oriented (symbolic) communication \rightarrow (predominantly) analog input and numeric output \rightarrow multimodality \rightarrow dialog-oriented interface.
"Dialog-oriented" means supporting genuine dialog, where both interlocutors can intervene as needed any time during the interaction. That means initiating interrupts: a) Users must be able to reconfigure scenario executions, to fine-tune the performance of any function(ality) mirrored in the interface. b) Environment factors (at least the essential and/or the most dynamic ones) must be able to act as stimuli during software execution, to inform or alert the user in real time about the latest changes - no matter if they are real (e.g., ecologic alert) or virtual (e.g., system response to a modified scenario). In other words, to get in due time an answer to the "What-if" question.

In nuce, the interface conveys the inherent need for "Just in Time" interactivity - i.e., the environment too should have the possibility to initiate dialog. Because that can happen at any moment - mainly in emergencies - it requires non-algorithmic software. (How this dialog is reflected in the appliance, is shown for architecture in 6.2 and for the interface itself in 6.3 and 6.4.)

4.3.2. Microchronic Cybernetic Modelling, Sine Qua Non in Biologic Research

The syntagm "microchronic modelling" is still not at all used (Google search, April 9, 2013) while the term "microchronic" is yet very rare in scholarly papers; the last mention was in 2010 in the phrase "micro-chronic delay" in musical context. (Paradoxically, the concept was firstly applied very far from engineering, namely in Mircea Eliade's categories of microchronic, mesochronic, and macrochronic - time.)

In CybMd a microchronic approach is unavoidable because cybernetics as science was built on the concept of negative feedback. In its simplest meaning, "feedback" describes the process of taking a fragment of a system output and feeding it back into the system input. "At a first glance it seems puzzling to look for a process consisting in taking a system's output magnitude, processing it [...], and feeding it back into the system together with the initial input so that the new output value should diminish. [...] The rationale emerges not in cybernetics, where it is fundamental, but - decades before

Wiener created this science [25] - in radio engineering/electronics (where it comes from), to reduce the fading effect in radio wave propagation, i.e., to counteract an external perturbation" [6].
"The strangeness or even illusoriness of a total instantaneity suggests a kind of time travelling" [14]. Indeed, if it is straightforward to neglect "macrochronically" the time needed by a input magnitude to be processed by the system - namely to consider that the system output is quasi-synchronous with its input -, it is weird to regard that a fraction of this output is combined with the system's own input and "is even capable to influence the amplification process as a whole (i.e., to consider that "signal cause" and "signal effect" can be mixed up instantaneously). This perspective becomes totally inacceptable in ecology (where Δt represents usually the duration of a generation of a species)" [14]. Expressions like "the same input value should be considered, both after and before feeding back" are unable to make atemporality more palatable.

In short, for modelling living systems: a) GST as Lingua Franca is necessary but not anymore sufficient: the conceptual framework of cybernetics itself becomes sine qua non.
b) Atemporal models are out of question.

Though, the problem of what kind of time should be used - i.e., setting up a model of time itself - , is so consequential for modelling the stability of living systems, that it requires a detailed investigation, together with the mechanisms that implement it (5.1, 5.4).

4.3.3. From Spatial Data To Temporal Information. (Undesired) Example

The emergency solution trying to "metamorphose" (existing) valuable spatial data into (badly needed but yet lacking) temporal information (part of "Plan B1", 1.1.3) is outlined:

The central idea of the spatio-temporal information metamorphose is to transform the spatial data (acquired through expanded measurements) into temporal information (to be acquired taking repeated measurements in the same locations). This is possible when employing predictive models where they are aimed at, i.e. to predict measurement results in all locations taking measurements only in a (small yet statistically relevant) subset of them. The results in the complementary subset are obtained through statistic extrapolation, saving thus costly time. Next, measurements need to be taken only in the small subset (getting thus a minimal temporal information about system evolution during the time interval between successive measurements).

To carry out the metamorphose, the six milestones on the road from spatial data to temporal information are listed below as steps (the first three must be carried out sequentially, but the other can be performed in parallel):

1. Reassessing the data inventory of spatial distribution.
2. Taking out a relevant small subset of locations (RSSL) with a relevant cardinal.
3. Taking the same measurements in RSSL as before in all locations.
4. Selecting a predictive model able to predict measurement results in the complementary subset of RSSL, based on step 3.
5. Setting up a reasonably repetition frequency F for step 3 , depending on the results of steps 2 and 4. "Reasonably" means compromise between N, available personnel, and deadlines. (Within Plan $B, N=6, F=1 /$ month).
6. Repeating step $3, N-1$ times.

FIFTH CHAPTER: NESTED MECHANISMS

Mechanisms and Time Species for Modelling Stability

The chapter organization follows, from PrsADT, the steps in Figure 4.1, emphasising the increasing mechanism complexity - mainly as regards the key problem of modelling time itself (4.1.1, 4.3.2). The first engineering use of negative feedback was to cut perturbation in simple systems, without needing to care about time (5.1). Next, the key non-algorithmic mechanisms built particularly for homeostasis can be specified: ARC, for microchronic modelling of simplest biologic subsystems (5.2) and the outer mechanism ARCH (H from hysteresis) that adds a crucial tool to counter anthropogenic disturbance (5.3). Since hysteresis requires a second time model, WiTi, a newcomer in microchronic CybMd, could be tried to see if it helps correlating different times (5.4).

5.1. Macrochronic Modelling to Cut Perturbation in Simple Systems

The title needs explanation. The terms mean here: a) "Macrochronic": time can be ignored - even as NeTi - when speed is so high that instantaneity seems normal. b) "Cuf": "reducing the effect" not "removing the cause". c) "Simple": formed by an amplifier and a reaction network, both linear. Since instantaneity is unacceptable, Barkhausen's approach is revisited, as foundation for shifting from atemporality to discrete time (5.1.1). To this end, DOMINO is used as inner doll, taking advantage of its discretisation potential to model stability of simple linear systems in discrete time (5.1.2). Thus, incorporated in more complex mechanisms (ARC, ARCH), DOMINO was adapted for scenarios, where the third IF value is used to answer key "What-if" questions (5.1.3).

5.1.1. Barkhausen Revisited: From Atemporality to Discrete Time

As start point for CybMd, it is useful to rediscover Barkhausen's relation for system (in)-stability based on (negative) feedback when radio took off in the '20ies (Figure 5.1. This figure, together with Figure 5.2, "tries to "recapitulate transdisciplinary" the conceptual progress from technologic solution to focal principle of cybernetic modelling" [14].)

Figure 5.1 shows the quadripolar structure of a typical negative feedback loop in early electronic equipment. At first it aimed just to counteract fading in early radio receivers; later emphasis was put on reducing noise and distortions in the output signal $\mathbf{V}_{\mathbf{o}}$ - not to reduce perturbation in the input signal $\mathbf{V}_{\mathbf{i}}$.

$$
A_{f b}=A /\left(1-\beta^{*} A\right) \text { iff } \Delta t->0 \text { (macrochronic view). }
$$

Figure 5.1. Barkhausen: $\beta<0$ to counteract perturbations (adapted from [14])
The initial \mathbf{I} (nput) magnitude value, $\mathbf{V}_{\text {iin }}$ is amplified \mathbf{A} times, where \mathbf{A} denotes the amplification factor. From the \mathbf{O} (utput) magnitude value $\mathbf{V}_{\mathbf{o}}$ a fraction $\mathbf{V}_{\mathrm{fb}} / \mathbf{V}_{\mathbf{0}}$ is transferred through the feedback network having a transfer factor $\boldsymbol{\beta}=\mathbf{V}_{\boldsymbol{\beta}} / \mathbf{V}_{\mathbf{0}}$. (To suggest that at first it was electric tension, advantage was taken of the fact that "value" and "voltage" have the same initials.) Thus, in the presence of feedback, the input value becomes $\mathbf{V}_{\text {ifb }}=V_{i i n}+V_{\beta}$. However, to assess the feedback effect, the same input value should be considered, both after and before feeding back, namely the feedback amplification factor $\mathbf{A}_{\mathfrak{f b}}$ refers to the initial input value, $\mathbf{A}_{\mathrm{fb}}=\mathbf{V}_{\mathbf{0}} / \mathbf{V}_{\text {iin }}$.

In this context, the feedback amplification is

$$
A_{f b}=V_{0} / V_{i i n}=V_{0} /\left(V_{i f b}-V_{\beta}\right)=V_{0} /\left(V_{i f b}-\beta^{*} V_{0}\right)=A^{*} V_{i} /\left(V_{i}-\beta^{*} A^{*} V_{i}\right)=A /\left(1-\beta^{*} A\right)
$$

Since the factor "1- $\boldsymbol{\beta}^{*} \mathbf{A}^{\prime}$ " changes the amplification value - reflecting thus the feedback effect - it deserves more attention: the sign before $\boldsymbol{\beta}^{*} \mathbf{A}$ governs the whole process. As shown in Figure 5.1, the feedback tension is added to the initial input before entering the amplifier: $\mathbf{V}_{\text {ifb }}=\mathbf{V}_{\text {iin }}+\boldsymbol{\beta}^{*} \mathbf{V}_{\mathrm{o}}$ (as shown); Thus, when feedback is positive (as considered above, $\boldsymbol{\beta}>\mathbf{0}$), $\mathbf{A}_{\mathrm{fb}}>\mathbf{A}$. To apply negative feedback, \mathbf{V}_{fb} should be in antiphase with \mathbf{V}_{0}. Then $\mathbf{A}_{\mathrm{fb}}=\mathbf{A} /\left[1-(-|\beta|)^{*} A\right]=\mathbf{A} /\left(1+|\beta|^{*} A\right)$, hence less than \mathbf{A}.

5.1.2. Stability of Linear Systems in Discrete Time. DOMINO as Inner Doll

Despite not being original contribution - neither in [2] nor in ADT - DOMINO [12] is of utmost significance for enabling a simple shift from macro to microchronic modelling via discrete time. To this end, the third IF exit is used rather for its discretisation potential due to the "time span given", than to its ability to handle uncertainty through "UNDECIDABLE" in that time span. (This rich semantics is employed in WISC, 5.1.3.) Hence, why DOMINO as innermost doll?

As shown (3.2, 4.1.3, 4.2, 4.3.1) chaoplexity is a major drawback in modelling living systems through both its components. Since a temporal dimension is essential, to reduce
cognitive chaoplexity, the time model should be the simplest possible able to deal with the - hardly reducible - structural chaoplexity. This is obviously discrete time. (As attested by the history of cinematography, the first movies were just a sequence of pictures.)

However, not any sequence of distinct moments in conventional (Newtonian) time, can be used in CybMd because it cannot mirror irreversibility - even, in an oversimplified manner. Perhaps, the simplest common form of irreversibility is: "something happened". (Unfortunately, in biology the possibility to "Undo" - i.e., to reduce the effects of the happening to nonexistence - is extremely rare in untrivial situations, 2.1.2.)

DOMINO satisfies also this minimal requirement for irreversibility through its nonalgorithmic TIMEOUT: the WAIT is terminated either by an exogenic environment intervention or by an exception. Both are irreversible "in the time span given" (i.e., in DIU; the acronym marks its main connotations: Delay, Irreversibility, Uncertainty). Thus, incorporated in a loop with a suitable number of iterations (for instance, in the example in 4.3.3 there are six iterations), DOMINO allows "taking snapshots", that give a rough idea about the complex process going on (for instance, how far is the system from a stable state).

In advanced research, DOMINO could be employed in sampling nontrivial processes in line with the Nyquist-Shannon-Kotelnikov theorem (e.g., effects of severe pollution). Yet that kind of problem is totally outside the scope of $A D T$ since it does not require non-algorithmic software - unlike most processes in ecologic systems, that are neither stationary, nor stochastic.

5.1.3. DOMINO: Using Trivalent IF to answer questions in "What-if" scenarios

Since the prospect to employ DOMINO in WISC - changing its architectural role from supporting procrastination to prompting reactivity - emerged (almost) through serendipity, it should be carefully scrutinised from all perspectives:

- PrsADT. As based on exception handling, it embodies the very idea of non-algorithmic software. Thus, its validation is crucial for complying with [1]. Moreover, if it is validated within the outermost Matryoshka (namely incorporated, with significantly enriched semantics, in the $A R C H$ mechanism), then, a fortiori, are validated both its initial meaning (trivalent logic semantics implemented via the bivalent logic of Windows API, [12]) and its use in [2] (explicitly decision-oriented procrastination mechanism).
- PrsCSIT. The semantic enrichment refers to the possible interpretations of the third output value of IF. Although keeping its basic meaning (2.2.1), there are (at least) two other possible employments, distinct from the procrastination-oriented "Decision can(not) be postponed": a) "Measure X is mandatory" in a boundedly rational (very) simplified deontic logic (moreover, rather a kind of "obligatoriness" in von Wright's initial system). b) "Risk surpasses the limit value" in the directions proposed in [27] "to quantify the risk management effort necessary [...] to address the uncertain, imprecise, and multi-dimensional nature of the interactions between system elements" [27].
- PrsU. The new semantics of the trivalent IF, can be deemed as useful only if their potential is reflected in the interface allowing user to devise WISC, where the third IF value
is used to answer "What-if" questions. For instance, "Measure X is mandatory" is relevant in normative scenarios (for reducing pollution), while "Risk surpasses the limit value" is vital in descriptive scenarios (for ecologic warning).

5.2. ARC: Microchronic Modelling of Simplest Biologic Subsystems

As elemental entity for modelling negative feedback, the mechanism has two parts: Amplifier and Reaction network that must be Coordinated. Thus: amplification is natural, yet nature is chaoplex (5.2 1); reaction: negative feedback is vital for stability in living systems (5.2.2); coordination: homeostasis of oversimplified living systems (5.2.3).

5.2.1. Amplification: Is Natural. Yet, Nature is Chaoplex

Here "natural" has almost all its undertones: the amplification process is as usual: the system outputs a number of entities (for instance, individuals of a benthic community) A times greater than the number of entities at input. When "amplification" is perceived as a transdisciplinary concept applicable to ecology, namely quasi-synonymous to "growth", it is also organic, biologic, inborn, instinctive, and unprocessed. Nevertheless, to be operational in a CybMd mechanism for stability (not particularised to ecologic stability), it must be investigated not only in its - artificial? - radio engineering hypostasis (5.1.1) but also in its biologic meaning - still keeping a "CybMd mindset" (4.3.2) and based on its widespread use in electronics and electroacoustics.

From PrsADT, it suffices to regard an amplifier (electronic, biologic, ecologic, etc.) as a quadripole having associated a real number \mathbf{A}, meaning that the output value y of the amplified magnitude will be A times greater than its input value x. (For the sake of simplicity, potentiometers, i.e., simple passive electric circuits composed by a resistor and a cursor, are considered amplifiers with $\mathbf{A} \leq 1$.)

Theorem. The set of cybernetic amplifiers $\boldsymbol{C A}$ together with the operation of connecting in series S, forms a group.

Proof. To prove that $(\boldsymbol{C A}, \boldsymbol{S})$ has a group structure, i.e.,. $\forall x, y \in \boldsymbol{C A}: x \boldsymbol{S} y \in \boldsymbol{C A}$, it suffices to show that the four group axioms are satisfied:

- Closure. The result of the operation $x \boldsymbol{S} y$ gives another amplifier obtained connecting, x and y in series. Since the input of y is the output of x, the output value of y will be \mathbf{A}_{y} times greater than its input value, namely the output value of x, which is $\mathbf{A}_{\mathbf{x}}$ times greater than the input value of x Thus, the compound amplification, namely the output value of y divided by the input value of x will be the product of $\mathbf{A}_{\mathbf{y}}$ and $\mathbf{A}_{\mathbf{x}}$. But $\mathbf{A}_{\mathbf{y}} * \mathbf{A}_{\mathbf{x}} \in \mathbb{R}$. Hence, $x \boldsymbol{S} y \in \boldsymbol{C} \boldsymbol{A}$. (In practice that means that whatever amplification $(\mathbf{A}>1$) or attenuation ($\mathbf{A}<1$) is needed, it is attainable with at most two components.)
- Associativity. Connecting in series is obviously physically associative; hence, $(x \boldsymbol{S} y) \boldsymbol{S} z=x \boldsymbol{S}(y \boldsymbol{S} z)$ (To prove the fact that such a group is abelian, multiplicative and so on, is outside PrsADT. Anyhow, the proofs are trivial, similar to this one.)
- Identity. Carrying on this plainness approach, it is obvious that the identity element, $\mathbf{1}_{C A}$, is a pair of wires or - to give it a minimal electrical embodiment - a resistor or any kind of passive circuit letting the input value unchanged $(\mathbf{A}=1)$. Of course, for any amplifier x the output value will remain unchanged (and equal to the input value), i.e., the equality chain $\forall x \in \boldsymbol{C A}: 1_{C A} \boldsymbol{S} x=x \boldsymbol{S} \mathbf{1}_{C A}=x$ holds.
- Invertibility. Likewise, for each amplifier x, having an amplification factor of $\mathbf{A}_{\mathbf{x}}$, there is another amplifier y (its inverse element, x^{-1}), having an amplification factor of $\mathbf{A}_{\mathbf{y}}=1 / \mathbf{A}_{\mathbf{x}}$. Hence, the equality chain $\forall x, y \in \boldsymbol{C A}: x \boldsymbol{S} x^{-1}=x^{-1} \boldsymbol{S} x=\mathbf{1}_{C A}$ holds.

The need for the unusual theorem above has to be justified, because it is not employed immediately neither in the nested mechanisms (4.1.1) nor in the appliance (Chapter 6):

- As shown above (4.1.1, 4.2.1, 4.2.3, 4.3.2) and reinforced below (in the rest of this chapter and in the next one), CybMd cannot rely on the unacceptable reductionist approach, considering that physical feedback loops could be modelled as linear just assembling a sufficiently great number of such simple "CA pairs".
- A fortiori, for living systems there is no feedback loop reducible to linear combinations of $\boldsymbol{C} \boldsymbol{A}$ pairs (even nonlinearity is function of time).
- A fortiori, even macrochronic modelling of homeostasis in oversimplified living systems is too chaoplex for such linear combinations.
- Hence, to legitimate the use of \boldsymbol{A} and $\boldsymbol{\beta}$, in both nested mechanisms and toolkit appliance, the theorem above is necessary, since it proves that $\boldsymbol{C A}$ pairs are able to model oversimplified living systems, since, as group, they allow finding homomorphic projections in real-world feedback loops (albeit in very simple biologic systems).
- On the other hand, from PrsCSIT it proves that CybMd can apply tractable mathematics - provided it is not old-fashioned.

5.2.2. Reaction: (Negative) Feedback Is Vital for Stability in Living Systems

While experiencing amplification is natural - at least as regards the main fields governing our sensations (electromagnetic and acoustic, respectively) - reaction had to be realised cognitively. Even the section title sounds confusing, without explanation: "Choosing GST as Lingua Franca [...] was much more than a linguistic bridge [...] because it is able to express in a transdisciplinarily palatable jargon the vital relationship between cognition and cybernetic, automatic, or intentional systems" [2]. However, not even GST terminology suffices always. (This is a key reason for including a memetic approach, 5.4.4.)

After clarifying "feedback" as both process and mechanism, for improving communication with ecologists, [6] goes on in transdisciplinary speech: ""feedback"" was adopted for cybernetic systems from electronics (as forerunner of automatic systems), but for intentional systems the much older (and mentally more nearby) term "reaction" is kept for three reasons" [6]. The reasons (2.3.2) are further qualified for living systems: "a) [...] is a most conspicuous sign of life; b) it evokes resistance to environment hostility (a living
system counteracts); c) [...] evokes also persistence, continuance through stability (here the undertone is to react to any specific time model applied, not necessarily antagonism)" [6].

In addition, after explaining that "negative feedback tends to keep parameter values, is corrective, conservative [whereas] positive feedback tends to modify parameter values, is evolutive, innovative" [6], the same glossary entry contrasts the fundamental positive role of negative feedback in living systems (it "promotes symmetry, stationariness, stability, reversibility") with the huge dangers linked to positive feedback in all kind of systems (it "promotes chain reactions, system increase (perhaps catastrophic, leading to system annihilation), instability, irreversibility") [6].

Consequently, negative feedback is vital for stability in all kind of systems, at any level of organization from simple automata to robots, or from cells to benthic communities. So, why is "negative" weakened by putting it in parentheses? Because ecologic systems need positive feedback too as trigger of ontogenesis and generator of biologic growth. Therefore, at least to compensate irreversible losses - even at subcellular level -, both feedback species are vital. (Nevertheless, positive feedback is outside the scope of ADT.)

In short: a) negative feedback networks can be seen as an amplifier with $\mathbf{A} \leq 1$ (technologically, for the $A R C$ mechanism it can be thought of as a potentiometer); b) for CybMd it suffices only "within an outer doll".

Even so it is a challenge to coordinate it with an equally oversimplified amplifier.

5.2.3. Coordination: Stability (Homeostasis) of Oversimplified Living Systems

Considering only Figure 5.1, this section about coordinating two circuits connected in series is useless. Its role is highlighted by Figure 5.2 that "shows the block diagram for feedback in a cybernetic system reduced to essentials" [14]. The new element in Figure 5.2 is time itself: $\boldsymbol{\Delta t}$ (the interval between two successive discrete time moments, 5.1.2). Here, in line with the microchronic view "the input value "before feeding back" would be seen in the $\boldsymbol{n}^{- \text {th }}$ moment, while the value "after feeding back" would be seen in the $(\boldsymbol{n}+\boldsymbol{1})^{\text {th }}$ moment.). More generally, for any process where time cannot be neglected the feedback loop should reflect the two successive time moments: $\mathbf{V}_{\mathbf{i p r}}$, (pr, from preceding or previous, was the input value before being amplified) and $\mathbf{V}_{\text {ic }}$ (c, from current, is the value that enters the amplifier now). Referring to discrete time moments, $\mathbf{V}_{\mathbf{i c}}=\mathbf{V}_{\mathbf{i}}$ at $\mathbf{t}_{\mathbf{n}}$ and $\mathbf{V}_{\mathbf{i p r}}=\mathbf{V}_{\mathbf{i}}$ at $\mathbf{t}_{\mathrm{n}-1}{ }^{\text {" }}$ [14].

$$
V_{i c}=V_{i i n}+V_{\beta}=V_{i i n}+\beta^{*} V_{o}=V_{i i n}+\beta^{*} A^{*} V_{i p r}
$$

Hence, the basic microchronic feedback formula is: $\mathbf{V}_{\text {iin }}=\mathbf{V}_{\text {ic }}-\boldsymbol{\beta}^{*} \mathbf{A}^{*} \mathbf{V}_{\text {ipr }}$
Thus, because $\boldsymbol{\Delta t}$ cannot be overseen anymore, the microchronic amplification is:

$$
A=V_{0} / V_{\text {iin }}=V_{0} /\left(V_{\text {ic }}-\beta^{*} A^{*} V_{\text {ipr }}\right)>0
$$

Of course, macrochronic, $\mathbf{V}_{\text {ic }}=\mathrm{V}_{\text {ipr }}=\mathrm{Vi}$; thus:
$A=V_{0} / V_{\text {iin }}=V_{0} /\left(V^{*}\left(1-\boldsymbol{\beta}^{*} A\right)\right)=A /\left(1-\boldsymbol{\beta}^{*} A\right)$ (regaining the Barkhausen formula, 5.1.1).

Figure 5.2. Wiener: $\beta<0$ to enable homeostasis (stability) in cybernetic systems (simplified from [14])
"The role of an engineering approach is to elucidate the mechanisms (in particular feedback interactions) responsible for such observed phenomena" [24]. Unfortunately, for modelling complex living systems "elucidating" is not enough. Indeed, apparently, infinite speed should be rather easier to conceive mentally than to meet in engineering practice. Although harder to assimilate cognitively, in electronics - due to the great speed of signal propagation - feedback mechanisms can mostly afford to sidestep an explicit temporal dimension. Yet such circumvention is impossible when modelling processes in living systems. Homeostasis is no exception.

5.3. ARCH: Hysteresis as Tool to Counter Anthropogenic Disturbance

As outermost doll, $A R C H$ must prove that it conveys the functionality of all the mechanisms it contains and their potential to model homeostasis as well as to answer "What-if questions. Thus, it is scrutinised as transdisciplinary ARCH from Claude Bernard to system biology (5.3.1). Likewise, as engineering $A R C H$ its becoming is examined from the necessity of intractable equations in conventional homeostasis models to the sufficiency of simple FOR loops in its current implementation (5.3.2). Finally, its key addon to CybMd is outlined: the way nature is adapting ecosystems to exogenic perturbation is illustrated via a most worrying threat: unpredictable anthropogenic disturbance (5.3.3).

5.3.1. Transdisciplinary ARCH: From Claude Bernard to System Biology

Claude Bernard discovered the ancestor concept of homeostasis: "La fixité du milieu intérieur est la condition d'une vie libre et indépendante [...] This independence [...] derives from the fact that in the living being, the tissues are [...] protected by a veritable internal environment" [en.wikipedia.org/wiki/Claude_Bernard].

After a century, Wiener [26] explained the "how" of the "what" intuited by Bernard. However, the conceptual debate about this kind of topic is not even now settled, as shown by a recent comprehensive study carried out by ESF (European Science Foundation)
having the relevant title "FORWARD LOOK Systems Biology: a Grand Challenge for Europe": "an important task of Systems Biology is to identify functional units (subsystems) that realise such 'dynamic motifs', including for example 'oscillations', 'amplification', 'hysteresis', 'homeostasis'. Stability and bifurcation analysis are important tools for this task. [...] Many of the existing systems-theoretic techniques are not well suited for short time series, uncertainty in data and for systems involving many variables: there is a need for basic research to develop new methodologies. Systems Biology is not the application of existing engineering tools to cell biology but a merger of both fields; both fields should co-evolve" [24] ${ }^{1}$.

Nevertheless, reductionists disagree: "mathematical modelling approaches have been applied to study the properties of biological systems [...] for analysing the properties of large metabolic networks and predicting the phenotypic behaviour of microorganisms [...]. Moreover, the stochastic kinetics modelling framework considering the stochastic nature of biochemical reactions has been used to predict the concentration of molecular components in the cell [...] The recent effort to build a whole-cell model has made the development of integrative modelling approaches necessary for the analysis of metabolism." [41]. Yet they are dissatisfied about the results: "In the absence of modelbased approaches, process optimisation in the bioindustry relies on extensive, and in certain cases unnecessary, experimentation". [...] Due to the lack of mechanistic information (and in many cases absence of proper modelling practice), mathematical models of biological processes are usually limited both in terms of range of validity and predictive capability. [...] Moreover, mathematical models of biological systems, generally, lack transferability to other, even similar, processes without a complete re-estimation of the model parameters. Bioprocess models usually focus on the significant process variables and their interconnectivity around specific operating conditions. [T]he primary "tools" utilised to describe the observed macroscopic behaviour are usually limited to nutrient and metabolite concentrations, a remnant from a period when those were the only readily measurable quantities analytically." [41].

Thus, after a century and a half, another quote from Bernard is still of worrying modernity: "Although the application of mathematics to every aspect of science is its ultimate goal, biology is still too complex and poorly understood. Therefore, for now the goal of medical science should be to discover all the new facts possible. Qualitative analysis must always precede quantitative analysis" [en.wikipedia.org/wiki/ Claude_Bernard].

5.3.2. Engineering ARCH: From Intractable Equations to Simple FOR Loops

As entailed by the Matryoshka approach (4.1.1), for both (transdisciplinary) research and (service-oriented) engineering reasons, $A R C H$ is neither an essentially different mechanism from, nor an application of $A R C$. It is rather based on $A R C$ but finalised as mechanism for PoC applications to be used in ecologic research where atemporal

[^0]modelling is totally unsuitable. Moreover, the syntagm "oversimplified living systems" suggests that without developing $A R C$ into $A R C H$, not even the simplest predator-prey communities could be modelled acceptably. This development is outlined below.
The following assessments stem from an authority in investigating liver homeostasis: "For many chemicals, this leakage is in a steady state, or homeostasis, which is really a dynamic steady state, i.e., fluctuating regularly in time" [23]. Findings reported in [23] "suggest that dynamic models of liver tests might improve the ability to detect when the liver is transitioning away from homeostasis in the presence of variation that is currently considered clinically insignificant. A candidate for the SDE for liver homeostasis is [...]" [23].
$$
\mathrm{d} \mathbf{X}_{t}=-t^{-1 / 2} \boldsymbol{\zeta}\left(\mathbf{X}_{t}-\boldsymbol{\mu}\right) \mathrm{d} t+t^{-1 / 4} \boldsymbol{\sigma} \mathrm{~d} \mathbf{B}_{t}
$$

Figure 5.3. Stochastic Differential Equation for homeostasis (snapshot from [23])
Despite its high complexity, the equation in Figure 5.3 was only partially satisfying. Positive aspects are rather general:

- System complexity. "There is nothing here that makes the approach restricted to liver biology. Similar homeostasis models can be developed for other combinations of clinical measurements" [23].
- Scope. "Once we have a good quantitative definition of homeostasis, the specificity problem can be attacked using pathodynamic (nonequilibrium) models of disease. Such phenotypic models may then map to specific genotypes or genotype-environment combinations and may provide a good transitional link between systems biology and clinical medicine" [23]. (Comments in 5.4.4.)

On the other hand, the same equation is self-assessed as still unsatisfying as regards:

- Adequacy. "Unfortunately, this equation is not physically intuitive because the homeostatic force appears to be relative to the amount of time between observations. [...]. However, it will require further study to see if there is a formulation that leads to a solution that is only a function of t" [23].
- Solution quality. "Better homeostasis models [...] may lead to predicting which patients are susceptible to idiosyncratic reactions, even though the actual rare event may not be amenable to such modelling" [23].

A similar case is illustrated by the "numeric simulations" in Figure 5.4: "By developing some new analysis technique, we are able to show that the two boundary equilibria are both saddle points and the interior equilibrium is globally asymptotically stable". The problem (a variant of applying the Lotka-Volterra model, discussed in 6.4.2) is of certain interest to ecologists, but they're not interested in "globally asymptotically stable solutions" and in visually incomprehensible curves even less.

Figure 5.4. Numeric simulations with $\theta=1$ (initial conditions $(x(0), y(0))=(1.2,1.2),(0.2,2),(1.2,2),(1.2,0.2),(0.2,0.2)$ (snapshot from [50])

In short, from PrsADT both cases are considered as blatant examples of "intractable mathematics" with affordable "in house" research resources (3.3.1). Hence, the boundedly rational approach applied in $A R C H$, replacing such equations by simple FOR loops (5.3.3, 5.4.3, 6.2.3) is compulsory.

5.3.3. Adapting to Perturbation: Anthropogenic Disturbance Is Unpredictable

From a biologic perspective homeostasis is a key way to ensure preservation. The homeostatic state results from an adaptation process triggered by a perturbation (4.2.3). Now, the "What for" question - vital for modelling - can be answered (from PrsADT): the process leading to a homeostatic state should be a fitting balance between efficiency and resource consumption, since to counteract successfully perturbations negative feedback must be intense, requiring valuable additional resources. Nature always achieve homeostasis via hysteretic delay, lagging in response to perturbation (the most acceptable meaning of hysteresis is "lag in response", 5.4.4). Whether this is because it solves the same (engineering) trade-off (saving resources genotypically, during phylogenesis, when homeostasis emerges or phenotypically, delaying the reaction until it becomes inexorable) or just because adaptation cannot be achieved suddenly seems to be yet unsettled (5.4.3, 5.4.4). (Despite being outside the scope of $A D T$, the issue is paramount for devising suitable WISC. 7.3.3, 7.3.4.)

In CybMd the possibility to "TIMEOUT" the response (5.1.2) increases not only the effectiveness of WISC (7.3.1, 7.3.4) but adds also significant functionality to the mechanisms aimed at modelling homeostasis (5.1.2, 5.1.3). For ecologic research that is vital, considering uncontrolled anthropogenic disturbance.

As shown in Figure 5.5, beside the intended input, perturbations also enter the system (to suggest their upsetting effect, Chiller font was used; the subliminal message linked to this font will emerge in 5.4.4). Since they are processed similarly to the desired input, negative feedback will reduce their effect "1+| $\left.\boldsymbol{\beta}\right|^{*} \mathbf{A}$ " times - that means, with a sufficiently great $|\boldsymbol{\beta}|$ (almost) as much as needed. The price? More energy spent for amplification. In electronics and robotics there is also more risk regarding system stability. Paradoxically, in ecologic research such risk is irrelevant, since concern about stability is mostly the trigger for research. (Hence, the aim of saving resources fades away in face of that of preserving ecologic systems.)

Figure 5.5. Perturbation as trigger of homeostasis with hysteretic delay in cybernetic systems (adapted from [14])

The two time species in the figure (τ for perturbation and \mathfrak{t} for the system) are fundamental from a biologic perspective, giving reason for the next sub-chapter.

5.4. Wienerian Time: A Newcomer in Microchronic Cybernetic Modelling

The need for a coherent conceptual framework for the temporal dimension of living systems goes far beyond the requirements of biologic modelling and is blatantly illustrated by the surprisingly widespread confusion about Bergsonian time as temporal dimension in biology (5.4.1). Next are given the reasons to use Wienerian time in ecologic models as placeholder for such a framework (5.4.2). The way WiTi is applied in correlating distinct time dimensions is abridged in this new light, facing the challenges of modelling homeostasis with hysteretic delay (5.4.3). Finally, the subjective experience acquired is described, approaching the issue of time as chaoplex feature of living systems from a memetic engineering stance (5.4.4).

5.4.1. Confusion about Bergsonian Time as Temporal Dimension in Biology

"Bergsonian time" (in the meaning given by Wiener, [25]) is so variously (mis)understood that a generally graspable model was unlikely to develop. Even when replacing the term by the more commonly used "biologic time" the concept has no universally accepted connotation. Confusion penetrated valuable scholarly papers ${ }^{2}$ as illustrated by examples taken from different fields (including authorities, as the first example shows):

- ASPET (American Society for Pharmacology and Experimental Therapeutics): "The Dedrick approach can describe the plasma concentration-time curves in humans from the relevant profiles in animal species by transforming the chronological time into the biologic time based on the allometric theory" [66] (at an annual meeting of experimental biology).
- "The most commonly used markers of internal biologic time in humans are the circadian rhythms of body temperature and the circadian rhythms of hormones cortisol and melatonin" [35].
- "Testing and reasoning are two main closely related diagnostic activities. Diagnostic testing is realized in Newtonian (short) time while diagnostic reasoning in (long) Bergsonian time. Both sort of time are used to analyze different kinds of problems" [29].
- "Slowing down or even „stopping" the cosmic and biologic time represents" [38].
- "The neoclassical school uses a Newtonian time concept in which time is homogeneous, mathematically discontinuous and causal inertia, while most Austrian economists adopt Henri Bergson's concept of time, where time is subjective and continuous, meaning that events are linked with each other" [67].
- "[S]trategy studies have developed essentially around two monotemporal approaches (i.e., process and content), emphasising how they are respectively related to two polarised monodimensional conceptions of time (i.e., Newtonian time and Bergsonian time)" [52].

To show that such misunderstanding stems from the difficulty to discriminate between macrochronic/static and microchronic/dynamic just an example about pseudo-synonyms

First [TheFree]dictionary definitions of two well-known "synonyms":
Contemporaneous: Originating, existing, or happening during the same period of time [...] Contemporary is used more often of persons, contemporaneous of events and facts [...] Simultaneous more narrowly specifies occurrence of events at the same time [...]

Synchronous: [...] Moving or operating at the same rate. [...] occurring at the same time; [...] recurring exactly together and at the same rate.

Despite the syncretic definitions and the rather fuzzy synonymity, a vague tendency towards semantic specialization is discernable: "contemporaneous" has a static undertone, suggesting coexistence in time (of beings or objects) whereas "synchronous" has a dynamic undertone calling to mind processes that are (more or less) related in time.

In short, all concepts about time are so logically incoherent that without systematising them, CybMd is hard to advance. What is more, the confusion originates perhaps also from software designers (not even robots need BeTi, circular time suffices) and from mathematicians (transferring atemporality from numbers to bits and from bits to models).

[^1]
5.4.2. Wienerian Time. (Sufficient?) Reasons to Use it in Ecologic Models

Paraphrasing both Poincaré and [14], the reasons to use WiTi in modelling homeostasis with hysteretic delay were "PrsADT convenient". The main reason - that motivated also the implementation of WiTi in ARCH before [14] was accepted for publishing - was the easiness to apply it for handling different species of time (5.4.3). Whether or not the reasons to use WiTi in $A D T$ are also sufficient to apply it more largely, to its primary purpose, as tool for (non-algorithmic) CybMd, is outside the competence and the scope of $A D T$ (that explains the "?" in the section title).

Since "PrsADT convenient" means here - as well as in 5.4 .3 and 6.4 - pragmatic, boundedly rational and "Just in Time", below is a fuzzy X-ray image of [14] taken from PrsADT stance when WiTi was yet unborn
"Choosing this title for the first chapter of [25], Wiener highlights the weight of these two contrasting kinds of time focusing on the opposition reversibility-irreversibility. Irreversible time was first called "human time" by Bergson [...] and later "living matter time" by Vernadsky [...]. Recently, this time was even tighter linked to living-system complexity: "internal (or subjective) time (as well as subjective space) of a complex system is determined by the content of its memory [...]. They are produced by information processes occurring in a complex system" [18]" [14].

Skipping Vernadsky and Bergson, modelling homeostasis showed that "biologic time" has irreversibility as defining feature and is "linked to living-system complexity" [18]. For implementing $A R C H$ (and validating thus all three nested mechanisms), the useful features of WiTi (as only accessible mathematic extension of NeTi) are expressed - in decreasing order of reflection in correlating different species of time - by two P (remises) and three C (riteria) from [14] (the key syntagmata/words are italicised):

- P2. "the extended time must be physically compatible with usual Newtonian time".
- P4. "To ease transdisciplinary research, GST must be kept as Lingua Franca (it [...] proved mandatory for cybernetic modelling of living systems)". (Now, the premise requires qualifying: GST is not anymore sufficient, because modelling living systems requires cybernetics, 3.2.1, 3.2.2, 4.3.2, 5.2.2.)
- C2. "the new time species should be not just mathematically tractable but also "mathematically convenient"".
- C4. "The [...] application domain should be relevant to transdisciplinary research, living systems, chaoplex environments".
- C5. ""Irreversibility should be [...] related to time that model physical irreversible processes". (Still partially implemented, 5.4.3.)

5.4.3. Wienerian Time in Modelling: Correlating Distinct Time Dimensions

Returning to the relations between perturbation and system (5.3.3), Figure 5.5 conveys that there are two species of time but postpones explanation until time-related issues are set up. Thus, before showing how WiTi eased correlating the two time species, it has to be proved matter-of-factly that τ (perturbation time) and \mathfrak{t} (system time) are not just
representations of two distinct (Newtonian) time functions, but dissimilar temporal dimensions. ("Matter-of-factly" means here "substantiated by the case of homeostasis with hysteretic delay", beyond theoretic assumptions for CybMd in 4.2.2, 4.2.3, 4.3.2.)

Indeed, without exogenic perturbation (entering the system) there may be stability (5.1.2, 5.2) - or even thermodynamic equilibrium (4.3.2, [23]) but there is no homeostasis. Certainly, homeostasis could be approximated by equilibrium but only macrochronically. This perspective is acceptable even in living systems iff processes are of explicit chemical nature and fast enough, as the successful model (4.3.2) of liver homeostasis shows [23]: "current methods of detecting abnormalities are crude and do not use clinical measurements efficiently. A dynamic model of homeostasis whose variation can be considered largely as biological randomness provides a standard for measuring changes [...] The homeostasis model should be the simplest dynamic case for describing the behaviour of clinical measurements. If models for this case are unknown or unknowable, it is not likely that specific dynamic disease models can be constructed. [S]uch a model exists for liver tests. It may be possible now to generalise it to the various liver lesions" [23]. (Some fragments are italicised here to impair redundancy, since they are commented upon in 5.4.4.)

Thus, in biology as a whole, current models are able to handle perturbation only if a macrochronic view is acceptable. However, even for liver lesions equations (as in Figure 5.3) solve only "the homeostasis part of the problem but not the patterns of deviation from homeostasis (pathodynamics)" [23]. (In a self-citation, [DC Trost - Pharmaceutical Sciences Encyclopedia: Drug ..., 2010 - Wiley Online Library] the term is defined "Pathodynamics is a term used by the author to describe a quantitative approach to disease that includes how the biological system changes over time".)

Based on this very relevant instance of (liver functionality) perturbation, the problem can be stated for any perturbation that cannot be regarded macrochronically (i.e., for all imaginable kinds of perturbation occurring in ecologic research):

Perturbation cannot be modelled as system feature not because it is chaoplex - and sometimes even partly unknown - but because, as trigger of homeostasis it is the decisive factor in system ontogenesis. In short: no perturbation, no system to model microchronically (with or without hysteretic delay). Hence, if the system in Figure 5.5 is modelled evolving in the time dimension \mathbf{t}, the perturbation must be modelled evolving in another time dimension $\boldsymbol{\tau}$ necessarily compatible with the system time \mathbf{t} because in $\boldsymbol{\tau}$ are two moments that correspond to essential instants in \mathbf{t}. (For homeostasis, \mathbf{t} is a species of biologic time, but not inevitably an instance of Wienerian time, \mathfrak{m}. Though, since in 6.3.2
$\operatorname{Im}(\mathfrak{m})=\mathbf{t}$ was implemented, the notations of [14] are kept).
"there must be temporal accessibility relations between the Kripke worlds carrying out homeostasis with hysteretic delay. The time dimensions require temporal correlation in (at least) two instants:
$-\boldsymbol{\tau}_{\mathbf{0}}>\boldsymbol{t}_{0}$ (entailed by the intrinsic exogenic nature of any perturbation);
$-\boldsymbol{\tau}_{\mathbf{h}}=\mathbf{t}_{\mathrm{y}} \boldsymbol{O}\left(\boldsymbol{\tau}_{\mathbf{h}} \mathrm{i}\right.$ is the moment in Newtonian time when the system begins to counteract the perturbation, after the hysteretic delay; $\mathbf{t}_{\boldsymbol{y} 0}$ is the moment in system time when the $\boldsymbol{\beta}$ network is connected to the amplifier input; since there can be only one "big bang" moment $\mathbf{t}_{0}=\mathbf{t}_{\mathbf{y} \mathbf{0}}$, when the system starts to react - delayed or not)." [14].

The challenging problem of linking the two time dimensions in the practical instance of the research-toolkit appliance architecture, where \mathbf{t} must be discrete (4.1.1, 5.1.1, 5.1.2,
5.2.3) and $\boldsymbol{\tau}$ must be irreversible (to mirror credibly unpredictable anthropogenic disturbance) is settled in 6.3.2.

5.4.4. Time as Chaoplex Feature of Living Systems. A Memetic Approach

Despite keeping on with the restraint to avoid any elaboration on memetic engineering (3.2.1, [5], [7]), there are at least eleven reasons to approach from a memetic stance the status of time in (dealing with) living systems. The (not strict) order is of decreased detail:

- A) The very validation of non-algorithmic software could be affected by conceptual confusion regarding the process nature of any service, in "Service-Oriented x " (7.1.1).
- B) "BR + JIT". Simplicity (as output of bounded rationality) is ineffective if it is not accessible "Just in (end-user subjective, irreversible) Time" (3.2.2).
- C) GST is operational as Lingua Franca for investigating living systems only considering time-related memes specific to the disciplines involved (3.2.2).
- D) The above reason is a fortiori valid to support CybMd as transdisciplinary endeavour (3.3.3, 4.2.1, 4.2.3, 5.4.1, 5.4.2).
- E) The reason is even more a fortiori relevant when employing non-algorithmic software in CybMd (situation hardly to avoid in non-trivial cases).
- F) There are already two instances where discontent regarding a chaoplex model (Figure 5.3) have memetic explanation: F1) The misleading equivalence "pathodynamics" = "nonequilibrium" and the illusion (here and now, 7.2.1) about a "good quantitative definition of homeostasis" cannot link (macrochronic) clinical medicine to (microchronic) system biology ([23], 5.3.2). F2) Variation of a (diachronic) dynamic model canNOT be considered biological (diachronic) randomness; thus the pessimistic sentence "If models for this case are unknown or unknowable, it is not likely that specific dynamic disease models can be constructed" is reasonable ([23], 5.4.3).
- G) "Plan A " failed firstly because of the memetic-originated confusion about "predictive" models (6.2.1, 6.2.2).
- H) "Plan B1" failed firstly because the service provider was unable to persuade the end user "Just-in-Time" to bridge the memetic gap regarding the nature of homeostasis: microchronic process or macrochronic (equilibrium) state (6.2.1).
- I)"G + H" as chaoplexity-related design-space dimensions should be mirrored in the interface escaping the memetic dilemma: clarity (to reduce cognitive complexity) or richness (to manage structural complexity) via the interface (6.2.1, 6.2.4.).
- J) In fact, memetic engineering was applied in implementing the interface (6.4.3).

The core idea is that all reasons stem from the time memeplex, more precisely focused on the memes related to the generalised confusion described in 5.4.1.

In short, the only boundedly rational acceptable approach is to consider time as (obviously chaoplex) feature of living systems, having irreversibility as distinctive attribute.

The best conclusion stems from Wiener himself: "[T]he individuality of the body is that of a flame rather than that of a stone, of a form rather than as a bit of substance" [26]. Memetically, the "flame" suggests not only the pattern but the process of "burning in time" - that is to say time itself.

SIXTH CHAPTER: RESEARCH TOOLKIT APPLIANCE

Tool for Exploring Homeostasis in Benthic Communities

As user-oriented output of $A D T$ the research toolkit should be carried out merging - as seamless as possible - all three perspectives (Figures 4.1, 4.2, 4.3) in its rationale, approach, and - consequently - in the (appliance-oriented) state of the art (6.1). Almost as corollary, the toolkit architecture is based on the interface as versatile, multifunctional proofing tool (6.2). As a result, the appliance structure underlines the interface implementation process carried out at two levels: A) Implementing the design space dimensions bottom-up, as required by nesting the mechanisms as Russian dolls (6.3). B) As research toolkit aimed at WISC for benthic communities in Transylvanian lotic systems, the interface must be engineered with more care than required by usual anthropocentric design (6.4).

6.1. Rationale, Approach, and State of the Art

The subchapter answers to three questions: Why? (rationale, 6.1.1), How to attack it? (approach, 6.1.2). Where from? (a double State of the Art, entailed by the approach). The first confronts the problem, focusing on ecolinguistics that is practically blocked by conflicting memes (6.1.3) while the second backs the solution, "What-if" scenarios in managing chaoplex living systems (6.1.4).

6.1.1. Rationale: Coalescing Six Objectives From Three Distinct Perspectives

For the sake of conciseness, the (interconnected) targets are concentrated into six objectives, two for each perspective (ordered in line with Figures 4.1, 4.2, 4.3: PrsADT, PrsCSIT, PrsU.

- O1. Designing a PoC (3.2.4, 4.1.4, 7.1.2) application for validating the outermost (4.1.1, 5.1.3, 5.2.2) mechanism, namely $A R C H$ (4.1.1. 5.3.2, 5.4.2).
- O2. Developing this application as a service-oriented appliance (4.1.1, 7.1.1), having all its functionality simple accessible through the interface (3.2.4, 4.1.1), to ease the quantitative testing (3.1.3, 3.2.3) required for validation (3.1.1).
- O3. Choosing an application domain sufficiently challenging (3.2.4) to require models (4.3.1, 5.1.2) able to mirror all concepts, approaches (3.2.2), and mechanisms (3.2.3) of [2] to be highlighted, mainly the synergistic effect of the thesis pillars "BR + JIT" (3.2.2).
- O4. Choosing a process to be modelled manifesting both cognitive and structural complexity, able to reflect pertinently the $A D T$ original contributions mainly as regards microchronic modelling (3.3.3, 4.3.2, 5.3.3, 5.4.3) of living systems as distinct subfield of CybMd (4.2.3, 5.1.1, 5.1.2, 5.2.2).
- O5. Carrying out a research toolkit for investigating homeostasis with hysteretic delay (4.1.1, 4.2.3, 5.2.3, 5.3.2, 5.3.3, 5.4.3) in benthic communities (3.2.4, 4.1.1, 5.2.1).
- O6. Using as much as possible the significant information (4.3.3) about biodiversity in Transylvanian lotic systems (3.2.4, 4.2.3).

The last objective is very sensitive because: "What confuses this question from the very beginning, is the multiplicity of possible definitions of "diversity" and "stability." There are probably no better instances of formalization indeterminacy in any scientific context. For instance, a reasonable first attempt to define diversity would be to equate the diversity of a community to the number of species in it, that is, its species "richness." The trouble is that there is ample reason to doubt that richness captures all that is relevant about diversity, whether or not we are interested in only its relationship to stability. [...] Stability turns out to be even more difficult to define. [...] At one extreme, stability can be defined to require that a community be truly in equilibrium: it does not change in either its composition (the abundances of every component) or in the interactions among these components. At the practical level, this definition faces the problem of vacuous scope: almost no natural community satisfies such a strict requirement of equilibrium." [21].

The non-ortogonality of the objectives above simplifies the application architectural design space (6.2.4). The price: a requiring approach to verify that all start-vector components are included in the condensed objectives and mirrored by the interface (6.3, 6.4).

6.1.2. Approach: Integrating All Proofs in a Flexible, Fault-Tolerant Interface

As non-negotiable matter, the premises (4.1.2) call for special attention, after being compelled to give up the initial plans because of lacking temporal data. Thus, the first premise requiring that "temporal evolution should be reflected through repeated measurements" seems impossible to respect ad litteram, since - partially excepting initial scenario input - all successive input is obtained either by running the model or by educated guess. However, when analysing where this verbalisation comes from ("a basic feature of biologic systems is that they evolve in time" and "the evolution of biologic systems must be modelled as process") it becomes clear that the premise is obeyed in both letter and spirit through microchronic modelling. The other two premises are followed straightforwardly implementing the innermost mechanism, DOMINO (5.1.2, 5.1.3, 6.3.2).

The criteria (4.1.3) have been obeyed as follows:

- A) Illustrating chaoplexity was more than obeyed, since: a) homeostasis was modelled including hysteretic delay; b) employing an original multifaceted mechanism ($A R C H$); c) the "intensely dynamic (uncertain) environment" was illustrated by its most relevant occurrence: unforeseen, intense anthropogenic disturbance (4.1.1, 5.3.3, 5.4.3).
- B) Was obeyed "as much as possible". The only simulation is at low level implementation: because of Java syntax, "return" from a (virtual) exception handler was simulated through "return -4" (6.3.1, 6.3.2).
- C) Because of very strict user-deadlines, the Scandinavian method was practically skipped over, being replaced by (late) consultation.
- D) Was more than obeyed, since the model is both simple and highly flexible (5.1.1, 5.1.2, 5.2.3, 5.4.3).
- E) The circumstantial criterion was impossible to follow after both PlanA and PlanB1 failed (4.3.1, 4.3.3).

The desideratum of PoC application is obeyed by the very existence of the appliance described below.

In short, the approach must be focused on " E " because: a) it is paramount from PrsU; b) it is the only criterion neglected so far; c) an emergency solution (part of Plan B1, 1.1.3) was available (as outlined in 4.3.3) d) the causes of plan failures were identified (both plan failed because of memetic related causes, 5.4.4); e) some major causes where already investigated from memetic stance in transdisciplinary research context in post-thesis work [4], [5]. Hence, the only both possible and effectual solution must start from adapting the solution in 4.3.3 to the extreme case of lacking any temporal information. The only two possibilities to create plausible temporal data without repeated measurements are by microchronic modelling or by educated guess. Practically, that means WISC.

6.1.3. Ecolinguistics Blocked by Conflicting Memes. State of the Art

The "State of the Art" below is neither independent of nor redundant with the various "State of the Art" in ADT. Thus, considering "ecolinguistics" as "linguistic ecology" and language as main "memetic carrier", taking advantage of applying in [5] memetics to ecology, via ecolinguistics, the following is an updated, very abridged summary of [5] focused on the main ambiguous - or even clashing - deeply rooted memes (except the time memeplex, already amply investigated in 5.3.1, 5.3.2, 5.4.1):

- "Protecting the environment" presents a threefold linguistic trap, imposing to opt for "protecting" or "preserving" and "growth" or "development". [D]espite their synonymy, for preserving the environment intense negative feedback would suffice but for protecting it, some positive feedback is necessary. Obviously, in "sustainable growth", the two types of feedback need a delicate balance and replacing "growth" by "development" does not change things - except increasing confusion.
- "[B]iocenosis" means a system where the relations are controlled by negative feedback able to ensure homeostasis; "ecosystem" means a system where stability is imperilled mainly because relations are altered in an uncontrolled manner by outside factors.
- [E]cologists have to identify the generators of positive feedback and to impose measures to reduce it drastically and urgent. (No lengthy quantitative, "predictive" modelling is necessary since it is irrelevant if the model output asserts that the system will blow up in a century or in two.)
- No need to refer to memetics to explain that homeostasis is good whereas avalanche is bad. [...] The nuances of "sustainable" (per se or in syntagm with "growth" or "development") and "ecological" (in its modern meaning of "natural" or "balanced") become clear".
- Humans are natural too. Hence, children should be taught that protecting the environment (i.e., respecting all species) does not mean to ignore the risk of being
"included as individual in the trophic chain" (e.g., by sharks when taking imprudently a bath in (their?) habitat, or having a crocodile as pet). Balance is unavoidable.
- Since natural processes - mainly after arbitrary human intervention - are unpredictable, ecologists have to shift from a "descriptive logic" towards a process-oriented "logic of action" [24]. That is a key motivation for using WISC, as described below.

6.1.4. "What-If" Scenarios in Managing Living Systems. State of the Art

As expected, WISC are used in situations of high complexity. To increase relevance the two 2013 instances described below are from the most chaoplex domain (military applications) and from large-scale ecology (applying landscape science to natural resource management):

- a) "One of the greatest challenges for a complex system practitioner is that the outcome will be highly context or history dependent. A challenge for military applications is that commanders may find it difficult to rely upon systems that lack a quantifiable measure of effectiveness [...] Complexity, in its purest sense, is also challenging to use because it does not always indicate what people might need to do differently in specific contexts [...] These last two concerns can be partially addressed by testing distinct scenarios numerous times, and comparing their outcomes. [...] Various methods can be used to study complex systems. Simulation using computer models is by far the preferred tool. Simulations allow a series of thought experiments to test various 'what if' scenarios" [30].
- b) "Models have been used to explore the behavior of systems, to make ex-ante assessments of policies, inputs to the planning process, and scenario creation [...] [D]ifferent types of change can be modeled and "what if" scenarios explored. The model's incorporation of "bottom up" and non-linear information enables it to focus on questions difficult to answer with more standard methods" $[58]^{3}$.

Both examples refer to critical resource management, requiring "BR + "JIT". Thus, Bounded rationality: [30] regards the "commander" as "complex system practitioner" (and explains that Canada is not part of US because in 1775 crucial decisions made by a revolutionary american general where "ill-fated"). Likewise, both exploit WISC as alternative method. "Just in Time": [58] is explicit about "questions difficult to answer with more standard methods".

In short, WISC are a valuable research tool per se, not just an emergency exit for running models without the necessary input data. As regards scenarios the appliance is aimed at, examples are hinted at in 6.4.3 and 6.4.4.

[^2]
6.2. Architecture: Interface as Versatile, Multifunctional Proofing Tool

The appliance architectonics is shaped by its first two design-(sub-)space dimensions (as research toolkit aimed at WISC): predictability and simplicity (6.2.1). The first two require (once more) "State of the Art", namely predictability to shed light again on ecologic stability: what do (not) predict current models (6.2.2) and simplicity, expressed through a simple (discrete) time model for many-sided scenarios (6.2.3). Other dimensions vital for "WISC-based-research" (e.g., cogency, ecolinguistics) are arrived at mixing richness with clarity in a multifunctional, user-friendly interface (6.2.4).

6.2.1. First Toolkit Design-Space Dimensions: Predictability and Simplicity

For the sake of brevity, design-space dimensions that are either already taken care of in the Matryoshka-kind mechanism design or common features of PoC applications, are grouped - rather loosely - in an all-embracing $\mathbf{S}_{\text {ADT }}$ (sub-)space. Therefore, the only dimensions to be considered carefully are the four defining features for a toolkit aiming at developing WISC. Thus, the appliance design space becomes a (vaguely defined) subset of the Cartesian product:

$\mathbf{S}_{\text {appliance }}=\mathbf{S}_{\text {ADT }} \times \mathbf{S}_{\text {wisc }}$

where $\mathbf{S}_{\text {wisc }}$ is shrunk to its main dimensions (from PrsADT),

$$
\mathbf{S}_{\text {wisc }}=\{\text { Predictability, Simplicity, Cogency, Ecolinguistics }\}
$$

Since the last two dimensions, are in fact both consequence, blend, and looked-for mirroring of all architectural features of a research toolkit, they are shaped as design-space in their own rights together with defending $\mathbf{S}_{\text {wisc }}$ (6.2.4). Thus, only the first two dimensions should be justified here (the first highlights the cognitive chaoplexity of the research subfield, the second its structural chaoplexity):

- Predictability. As sine qua non precondition for (any kind of) preservation, predictability is both the only scientific backbone of and the most widespread practical approach to ecology. The problem is crucial because evolution predictability is fundamental for end-users (researchers or environmental supervisors alike). Moreover, for the targeted appliance end-users, practically all they have here and now is experimental ecology: a huge amount of data, professionally collected and meticulously preprocessed in laboratory is available for further research waiting for fitting models to exploit its vast research potential. Unfortunately, this was impossible because of the yet unbridged memetic gap regarding the status of time in (dealing with) living systems (5.2, 5.4). The fundamental conceptual disparity is the difference between "predictive" (in "predictive models") and "predictable" (in "predictable evolution"). In the syntagm "predictive models" the connotations are confusing: "pre" means "in advance" but "in advance of knowing for sure" (because of uncertainty). It does not mean necessarily "in advance of happening" (because of future contingency).
- Simplicity. "Human-induced environmental changes differ from most natural changes in which they happen at a faster rate [...]. The first response of populations is usually
phenotypically plastic alterations of morphology, physiology and behaviour. This plasticity can be favourable and move the population closer to an adaptive peak in the altered environment [...], or be maladaptive and move the population further from the peak and increase the risk of extinction. [...]. Results show that a primary reaction is plastic alterations of behaviour, with some adjustments being adaptive while others are not. [...] Human disturbances can be dramatic and resolution of the limit of flexibility and the possibility of genetic adaptation should be important targets of future research" [15]. The keywords of [15] ("contemporary adaptation; environmental deterioration; evolution; mate choice; natural selection; phenotypic plasticity") are even more telling: all refer to processes that occur in irreversible (Bergsonian) time. Hence, to attain simplicity able to model "phenotypically plastic alterations" (all three words epitomise irreversibility, as it is obvious when replacing them by their antonyms: "genotypically elastic states"), a discrete time model is necessary but not at all sufficient: it must fit many-sided WISC that mirror system response to microchronically irreversible "human-induced environmental changes" [15].

6.2.2. Predictability. System Stability: What Do (Not) Predict Predictive Models

"Predictive modelling is the process by which a model is created or chosen to try to best predict the probability of an outcome" [wikipedia.org/wiki/Predictive_modeling]. The application areas mentioned in this entry illustrate the meaning of "probability of an outcome". Besides the reasons above, this "State of the Art" about the limits of predictive models is crucial as persuasion exercise for at least four reasons:

- A) For researchers in ecology or evolutionary biology, predictive models are extrapolative in space but not in time because living systems are open and (macroscopically) nondeterministic par excellence (i.e., even statistical determinism becomes irrelevant, [14]).
- B) To defend assumption "I)" for CybMd: "predictive models predict synchronically (biodiversity seen as spatial distribution" [14] of living systems) "but cannot predict diachronically (stability seen as evolution" [14] of living systems).
- C) Likewise for assumption "J)": "to predict evolution a statistically relevant amount of temporal information is required" [14]. That means repeating frequently measurements carried out in a sufficiently great number of locations or the - not "Just-in-Time" - solution given as example in 4.2.3).
- D) Key corollary: lacking any temporal data (about the real system evolution) the only way to get an idea about a plausible evolution is to run credible (i.e., microchronic) CybMd (e.g., to get a virtual system response to a relevant scenario). In other words, to get in due time an answer to a "What-if" question.

From a both transdisciplinary and pragmatic perspective, the limits are best illustrated through examples of applicative research domains where predictive models are currently used, focusing first on living systems:

- "In their seminal test of island biogeography predictions, Kinkel et al. [...] found evidence for species turnover and equilibrium in the phyllosphere, but not for a
species-area relationship. [...] Another exception is the derivation of log-normal species-abundance curves for a pseudomonad community [...], which is not in agreement with the zero-sum multinomial curve predicted by Hubbell's [...] neutral theory of biodiversity. Community assembly rules aim to predict spatial species distributions" [64].
- "Acid mine drainage (AMD) is a global problem that may have serious human health and environmental implications. Laboratory and field tests are commonly used for predicting AMD, [...]. Furthermore, these tests are often conducted at small-scale over a short period of time. Subsequently, extrapolation of these results into large-scale setting of mine sites introduce huge uncertainties for decision-makers. This study presents machine learning techniques to develop models to predict AMD quality using historical monitoring data of a mine site" [65].
- "But given that there is no guarantee that the future will resemble the past, why is this inductive gamble so effective, and why is inductive reasoning so prevalent? We suggest the predictive power of the genome is actually only part of the story. In no small part it is also because organisms are active agents who do work on their environments, transforming its state in reliable, predictable and often homeostatic ways [49].
- From a deeper theoretical point of view, one of the "philosophically intriguing [...] problems [is] the uniqueness problem: ecological systems are supposed to be unique both because they are contingent historical entities, and structurally because of their complexity. By itself being a historical entity does not present any problem for scientific study [...]. However, ecological systems are supposed to have histories that result in highly contingent structures - part of their complexity - that make them special. [...] There is an important philosophical lesson here: especially when a new discipline is being formed, the structure of the phenomena - how they are distinguished and classified - are in part determined by the models used to represent them. [...] Consequently, classification is not theoretically innocent [...] The most general and uncontroversial theoretical result to date is that progressively larger populations are required for safety in the face of demographic, environmental, and random catastrophic stochasticity. Moreover, because of the structural uncertainly of these models, apparently slight differences in assumptions and techniques routinely lead to widely divergent predictions" [21].

6.2.3. Simplicity. A Simple (Discrete) Time Model for Many-Sided Scenarios

"Body size is associated with fundamental biological processes such as metabolism, movement, and the rate of reproduction and evolution. Although allometric principles should also influence the range of potential behavioral responses for a given organism, evidence for such large-scale and cross-taxon relationships is lacking. [...] [B]ody size affects the likelihood of attack and the costs of predator avoidance. [...] We found a weak but significant relationship between two metrics of prey size (mean species-level prey mass and mean species level predator: prey size ratio) and two of the five prey response variables: risk-induced changes in prey habitat use and prey fecundity were significantly correlated with prey body size and the predator: prey ratio. Risk-induced reductions in prey activity were positively correlated with prey mass" [55].

The research above refers only to a single: a) allometric component (body size); b) anti-predator behaviour component (fear-based risk management); c) predator-prey species pair; d) reduced and well-known habitat. The result of [55] was a "weak relationship between two metrics of prey size and two of the five prey response variables". It was cited not to add another instance to the scores of examples proofing domain chaoplexity given in the (sub)chapters above, but to show that the distinctive simple time model allows getting similar - albeit just plausible - results, due to blending irreversibility (required by "fundamental biological processes such as metabolism, movement, and the rate of reproduction and evolution") with easy discretisation. This substantially simplified approach is possible by investigating stability via sampling - in fact or simulated through WISC - according to the Nyquist-Shannon-Kotelnikov theorem, without becoming aware neither of the biologic process per se, nor of the mathematics involved to model it.

The next example [28] is even more significant because, replacing the relatively rarely used allometry by the universally known "temperature effects on predator-prey interactions caused by global warming" it addresses a crucial environmental preservation issue:
"Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. [...] We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming" [28].

As regards other dimensions vital for "WISC-based-research" (for instance, cogency) they are arrived at mixing richness with clarity in a multifunctional interface (below).

6.2.4. Mixing Richness with Clarity: a Multifunctional, User-Friendly Interface

While "Richness" (from PrsU) corresponds entirely to "Multifunctional" (from PrsADT), "Clarity" (from PrsU) means not just "User-Friendly" (from PrsADT) - as in most customary applications - but, because the appliance is a workhorse research tool, it entails also other connotations of the polysemantic concept of "Clarity". Just a few motivations:

- a) "Simulations allow a series of thought experiments to test various 'what if' scenarios" [30]. However, thought experiments call for all connotations of "Clarity".
- b) Main (other) connotations of "Clarity" required by a research toolkit (e.g.: expressiveness, persuasiveness, eloquence) are strongly related to language.
- c) Ecologists are aware of the language problem. They gave even two meanings to the new subfield of ecology, that emerged from this concern: ecolinguistics.
- d) The many "State of the Art" sections above enhanced the assertion that cognitive chaoplexity is - at least in great part - of memetic nature.
- e) Language is a major, but indiscriminate "memetic carrier" (6.1.3). If a "What-if" question is distorted by a dubious meme, the answer is irrelevant - no matter if given by a person or by a scenario.
- f) Moreover, "To increase the preparedness for the unexpected it is useful to work with "what if" scenarios covering the range given [from climate models]. Results should be communicated as scenarios and not predictions" [40].

Therefore ecolinguistics was easily qualified as crucial design-space dimension of a toolkit aimed at WISC. (The idea gained weight after lacking the opportunity to apply the Scandinavian method.)

On the other hand, the real problem was not selecting suitable dimensions for $\mathbf{S}_{\text {wisc }}$ but its very existence because:

- a) It seems strange to disconnect a design-(sub)space from $\mathbf{S}_{\text {appliance }}$, bearing in mind that anthropocentric design was a precondition from all perspectives (4.3.1).
- b) Corollary: anthropocentrism is a sine qua non dimension of $\mathbf{S}_{\mathbf{A D T}}$ together with other dimensions reflecting key concepts/approaches of [2], like: bounded rationality, "Just-in-Time", uncertainty that should be validated (3.2.1, 3.2.2).
- c) As required by objective O2 (6.1.1), anthropocentrism too should be validated by quantitative testing (3.1.3, 3.2.3), albeit indirectly via a key aspect (simplicity, 7.2.4).
- d) Moreover, most central anthropocentric design features (e.g., semantic validation of analog input) remain unnoticed because they are expressed through sliders that hide significant parts of their (multi)functionality.

In spite of the above, $\mathbf{S}_{\text {wisc }}$ was unavoidable because WISC involves a design, where architecture, structure, implementation and validation are interrelated in a way that needs cautious blending (6.3.3, 6.4.3, 7.2.4, 7.3).

6.3. Structure: Implementing Dolls Bottom-Up. Testing Only the Outer

After searching with no success for an (integrated?) development environment (6.3.1), the main problem was still to emulate dynamic propagation of exceptions (6.3.2). Next, the workhorse nature of the toolkit reveals itself in a self-reflexive manner: the interface is in fact a series of very short-lived "prototype design" loops consisting of adding functionality, in six short-lived steps (6.3.3).

6.3.1. Choosing an (Integrated?) Development Environment

The title is rather standard than actual. In fact, there were five steps:

- Failing to find an IDE. The last Google-Scholar-2013-search-update (May,3) gave for "exception handling" + "fault tolerance" about 83 results, all of them referring to "exception handling" in line with the prevalent paradigm, namely confusing - in both Java (semantic) spirit and (syntactic) letter -"exception (handling)" with "error (recovery)". Likewise, for "research programming languages": about 7 results, none referring either to "exception
handling or to "fault tolerance". (What is more, the only reference to a research programming language meant a new platform (Aeolus) built still on Java.)
- Substituting simulation through emulation. To avoid "returning to square 1" as regards inacceptable risks when trying to validate simulated features (2.3.3, 3.1.3, 3.2.1, 3.2.2, 4.1.3, 4.3.1, 6.1.1), exceptions were emulated (6.3.2).
- Setting up a "monocrystal approach". The need for such a challenging approach was heightened by lacking expected communication with end-users. It consists of an extreme variant of "Successive Prototyping", where the appliance (in this case the toolkit itself) expands continually like a silicon monocrystal. That means implementing the mechanisms bottom-up, testing always the outermost, and looping in a "cut and try" manner (programming, integrating, implementing, testing, revising, restarting, 6.3.3).
- Assessing consequences. Here PrsADT and PrsU are equally important. Thus, the parameters to be exhaustively tested (6.4.4) are chosen according to their relevance from both perspectives A, $\boldsymbol{\beta}$, DIU, $\boldsymbol{\Delta t}$ (6.3.3, 6.4.3).
- Choosing IDE pieces. In this context, the selection was very easy, albeit not very pleasing: the most pragmatic mix was [38] (to enable emulating exception propagation low-level simulating only handler exits), [19] (to have a minimal API support for multithreading) as well as [42], [43], [44], and [45] (to enable suitable communication through and with the bit by bit developing interface).

6.3.2. Emulating Dynamic Propagation of Exceptions

"For cybernetic modelling of living systems exceptions are crucial, since reactivity is a (some authors consider "is the most") defining characteristic of life" [6].

To defend the way exceptions are handled in the research toolkit, four facets have to be elucidated for each of their three cardinal features (2.3.2), namely how could it be: a) supported by Windows32 API functions; b) emulated in Java; c) relevant for PoC validation (PrsADT); d) worthwhile for WISC (PrsU).

- Unexpectedness. a) The exception raised by "Set Event" is received through "Wait" and balanced via its two variants: with "TIMEOUT" (to keep asynchronicity at polling loop level) and without (to favour synchronicity). b) Java syntax implies no restriction. c) Vital for three reasons: c1) First and sine qua non component of non-algorithmic software (as a whole); c2) implementing simplicity through discrete time ($\boldsymbol{\Delta t}$). c3) minimal handling of uncertainty due to future contingents (DIU) d) "For ecology exceptions are threefold vital, as way to ensure "Just in Time" reaction to: a) unforeseen anthropogenic disturbances (essential for preserving ecologic systems); b) exogenous stimuli (from environment); c) endogenous stimuli (from system/body/organ endoceptors, essential for homeostasis)." [6].
- Consequence. ""Consequence" is used here instead of its more common synonym "importance" to highlight its role in risk management. [...] The syntagm "dynamic propagation" - now perceived as pleonastic - was coined (probably in the early 70ies) when exception handling was introduced in real-time programming, to suggest both the
key architectonic role of "propagation" (the superior programming unit is better suited for strategic decision making, since it is more context-aware) as well as the caveat that the exception should be conveyed from callee to caller (i.e., dynamically, not in line with the static block structure)" [6]. a) Propagation is straightforward using "RETURN - n". b) Java syntax is inacceptable since it forbids exiting from an exception handler using "RETURN - n" (as allowed for any other programming unit). c) Vital for validation because of the Matryoshka architectonics: ARCH could not model perturbation or hysteresis in (neither in BeTi, nor in any other time) if exceptions raised by DOMINO would not be propagated outwards, via DIU. d) Likewise vital for normative scenarios on countering anthropogenic disturbance.
- Rareness. Is skipped over because it is not essential from any perspective.

6.3.3. Toolkit as Workhorse: Adding Functionality in Six Short-Lived Steps

Following the conclusion of 6.2.4 and the "monocrystal approach" (6.3.1), the appliance was built beginning - and ending - with the interface in ten steps, each step integrating programming (code for both the mechanism component and the interface elements necessary to test it), debugging, testing, and commenting (from all perspectives). Here PrsADT keeps the connotations used in describing the mechanisms to be validated (Chapter 5), PrsCSIT is focused on non-algorithmic CybMd, and PrsU is split in two sub-perspectives in order of increased stakeholder interest: PrsUb/e (biology/ecology, regarding the entire research undertaking, at strategic echelon) and PrsUw (focused on WISC for field research, at tactic echelon). According to the approach set up in 6.1.2, as substitute for applying the Scandinavian method, the last four steps are outlined in 6.4.3, from PrsUw. The numeric values used in the first six steps have the interpretations (from the first two PrsU sub-perspectives, PrsADT and PrsCSIT) below:

- A. PrsUb/e: growth; reproduction rate. PrsADT: amplification. PrsCSIT: real number.
- $\boldsymbol{\beta}$. PrsUb/e: growth reduction rate. PrsADT: transfer factor. PrsCSIT: real number.
- $\mathbf{A}_{\mathbf{f b}}$. PrsUb/e: growth rate. PrsADT: feedback amplification. PrsCSIT: real number.
- $\boldsymbol{\Delta t}$. PrsUb/e: time span, lifespan. PrsADT: time granule. PrsCSIT: step in FOR loop.
- DIU. PrsUb/e: hysteretic delay. PrsADT: delay time. PrsCSIT: WAIT with TIMEOUT.

In short, the appliance models stability of linear systems in discrete time (from PrsADT and PrsCSIT) or homeostasis (with hysteretic delay) of oversimplified living systems (from $\operatorname{Prs}()$. The six implementation steps are listed below (from PrsADT, details in 6.4.4, AV2):

- a) DOMINO. Implemented as innermost mechanism (5.1.3)
- b) Macrochronic stability (according to the Barkhausen relation, 5.1.1).
- c) ARC. Implemented as middle mechanism (5.2.3) using discrete time (5.1.2).
- d) Exception propagation from DOMINO to ARC (emulated in Java, 6.3.2).
- e) $A R C H$. Implemented as outermost mechanism (5.3.2, 5.3.3).
- f) Exception propagation from DOMINO to ARCH (emulated in Java, 6.3.2).

6.4. Interface Shaping: Benthic Species in TransyIvanian Lotic Systems

The only foundation of WISC is the Lotka-Volterra model; however, its strong conditions, hard to meet in real habitats (6.4.1) require another State of the Art regarding the complicated variants of applying the model (6.4.2). Next, the interface can be shaped for predator-prey model scenarios (in four steps, 6.4.3). Finally, the software infrastructure for quantitative testing of $\mathbf{A}, \boldsymbol{\beta}$, DIU, and $\boldsymbol{\Delta t}$ as most significant parameters for validating non-algorithmic software necessary for CybMd is described in detail (6.4.4).

6.4.1. Lotka-Volterra Model: Strong Conditions, Hard to Meet in Real Habitats

"The Lotka-Volterra equations, also known as the predator-prey equations, are a pair of first-order, non-linear, differential equations frequently used to describe the dynamics of biological systems in which two species interact, one a predator and one its prey. [...] The [...] system of equations is an example of a Kolmogorov model [...] which is a more general framework that can model the dynamics of ecological systems with predator-prey interactions, competition, disease, and mutualism. [...] The Lotka-Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations: 1 . The prey population finds ample food at all times. 2 . The food supply of the predator population depends entirely on the prey populations. 3. The rate of change of population is proportional to its size. 4. During the process, the environment does not change in favour of one species and the genetic adaptation is sufficiently slow" [wikipedia.org/wiki/Lotka\�\�\�Volterra_equations].

Though, besides the four "assumptions ${ }^{4 "}$ above, there are also other oversimplifying conditions, hard to meet in any benthic setting - or even in any usual habitat altogether: "The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; [...]. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet" [wikipedia.org/wiki/Lotka\�\�\�Volterra_equations].

With such unnatural restrictions, it is not surprising that the "equations have periodic solutions and do not have a simple expression in terms of the usual trigonometric functions. However, a linearization of the equations yields a solution similar to simple harmonic motion [...] with the population of predators following that of prey by 90 " [wikipedia.org/wiki/Lotka\�\�\�Volterra_equations].

What is more, in practice (as the State of the Art below brings to light), all kind of additional parameters complicate the model without considering real settings, in real habitats.

[^3]
6.4.2. Variants of Applying the Lotka-Volterra Model. State of the Art

In [51] the authors "proposed a patchy predator-prey model with one patch as refuge and the other as open habitat, and incorporated prey refuge in the considered model explicitly. [They] applied an analytical approach to study the dynamic consequences of the simplest forms of refuge used by prey and the migration efficiency. The results have shown that the refuge used by prey and the migration efficiency play an important role in the dynamic consequences of the interacting populations and the equilibrium density of two interacting populations" [51]. Thus, despite being a "patchy model", variant details do not refer to other species, environment changes ("patchy ignoring assumption 4"), anthropogenic disturbances and so on, but to "migration", "global stability" (the last two concepts are keywords!), or " $\boldsymbol{\varphi}(\mathbf{x})$ " as "functional response of the predator population" to "x" that "represents a quantity of prey population that occupied a refuge". Instead of showing that such a habitat is - at least - plausible, the paper highlights the fact that " $\varphi(\mathbf{x})$ " satisfies the following assumption: $\varphi(0)=0, \varphi^{\prime}(x)>0(x>0)$ " [51].

The same matter is handled in the same way also in [50], where the results given as example of intractable mathematics in Figure 5.4, "implicate that in the Lotka-Volterra predator-prey system, the stabilizing effect of the mutual interference of predator species dominate the destabilizing effects of prey refuge" [50].

Likewise, in [35] the authors "derive from first principles the functional response of the predator and the reproduction rate of the prey in the case that the prey form groups as a defence against the predator and the latter captures only single prey".

For the sake of shortness, variant examples with parameters representing "effort of the prey and predator", "death rate of the predator", "capture coefficient of the prey", or "consumption rate of prey by a predator" are skipped over.

In short, the variants above, published in April-May 2013 in prestigious journals like Applied Mathematics and Computation, Mathematical Biosciences, or Journal of mathematical biology, show that: a) paradigm shifting towards CybMd is very slow; b) all three sub-perspectives of PrsU are exceedingly disregarded, favouring irrelevant details like "boundary equilibria" or "saddle points" (no field experiment is proposed); c) the Lotka-Volterra equations, overshadow the model - at least in the domain of ecologic modelling, where, instead of reducing complexity, they added complicatedness (6.4.3); d) corollary: the model per se is useful in real-world situations/habitats only for WISC.

6.4.3. Shaping the Interface: Four Steps for Predator-Prey Model Scenarios

"While much has been written about an alleged new science of complexity in recent years, no compelling operational distinction has yet been presented to distinguish complexity from complicatedness. In general, complex systems are supposed to exhibit "emergent" properties, that is those that, in some sense or other, resist reductionist explanation. [...] Beyond that, no stance will be taken on the complexity versus complicatedness issue" [21]. Based on the authority of The Stanford Encyclopedia of Philosophy (quoted in a similar "State of the Art" context, in 4.2.2), the research toolkit uses the (atypical) simplicity of the Lotka-Volterra model just for plausible scenarios, assumed as such.

Thus, the numeric values used in the four steps mentioned in 6.3.3 have the following (possible) interpretations from PrsUw: A: Prey population growth as if unimpeded by any hindrance. $\boldsymbol{\beta}$: Prey population growth reduction rate. $\mathbf{A}_{\mathbf{f b}}$: Prey population growth rate in a stable state. $\boldsymbol{\Delta t}$: Prey population lifespan. DIU: In normative scenarios evaluates outcome in a given time span. (Details in 7.3.1.)

In short, the appliance interface must ease setting up WISC (7.3.3, 7.3.4).
In this context, the four implementation steps are (details in 6.4.4 and 7.3.2):

- g) Sliders. Are multifunctional and general, i.e., usable for various kinds of input, languages and psychophysical laws governing cognition ([2], 4.3.1, 6.2.4)
- h) Menus and buttons. Besides their functionality, they play also the role of "Field-researcher guide for devising WISC" (4.1.1) trying to utter the topics in a (quasi)ecologic language, where "language" has four connotations (7.3.2). (Language as system of signs - in the meaning used in semiotics - is applied in "i)" below).
- i) Analog, approximate, uncertain input. After testing numerically the functionality added through the six steps (6.3.3), most sliders were redesigned to accept also a boundedly rational - albeit primeval - form of "Computing with words" (enabling thus the simplest form of expressing degrees of uncertainty via word-based data input ([2], 4.3.1).
- j) Logarithmic input. Iff "i)" gets immediate student acceptance (November 2013, 8.2.1), the uncertainty slider will be redesigned for logarithmic input (to test whether a variant of the Weber-Fechner law is applicable to cognitive matters). Otherwise, this step remains for long range future work (8.2.2).

6.4.4. Software Infrastructure for Quantitative Testing of $\boldsymbol{A}, \boldsymbol{\beta}, \mathrm{DIU}$, and $\boldsymbol{\Delta t}$

The testing infrastructure illustrates best interface implementation because it is:

- Essential for carrying out quantitative testing to validate the concepts, approaches, and mechanisms of [2] - the apex of ADT as a whole (7.2).
- Essential for using the toolkit appliance as footing for service-oriented validation of non-algorithmic CybMd (7.3).
- The central point of the "growing monocrystal" (as ad hoc variant of successive prototyping, 6.3.3) as well as the first both archetypal and serviceable interface component.
- The only interface aspect not subject to change, a month before finishing ADT caused by skipping over the Scandinavian method for developing software, 6.1.2, 6.2.4, 6.3.3).
- A convenient prolegomena for defending PoC validation in SOE (7.1).

As entailed by the five reasons above, for testing the main numeric values expressing the appliance functionality from PrsADT (6.3.3), the following infrastructure was built:

- Sliders. The defining values for (macrochronic) stability of a basic cybernetic system (Barkhausen feedback loop), namely amplification factor A, feedback network transfer factor $\boldsymbol{\beta}(|\boldsymbol{\beta}|<1)$, and feedback amplification factor $\boldsymbol{A}_{\mathrm{fb}}$ were tested via sliders that conceal their functionality (6.2.4). For instance, semantic validation (automatic at analog input) was
explicitly adapted for numeric input setting up limits, far beyond the true-to-life values that will be set up by the end-user for credible WISC (e.g., $\mathbf{A}<2$ means inexorable extinction rate), to ease testing "pathologic cases" necessary to PoC validation. On the other hand, allowing $\beta<0.01$ would be time wasting and possible confusing about the system propensity to attain a homeostatic state in due time.
- API functions and instructions. For the sake of reducing redundancy with 7.2, and AV1, here are listed five API functions necessary for minimal multithreading [19] (6.3.1) and one Java instruction [39], necessary to emulate dynamic exception propagation: Sleep, Wait, Set Event, Reset Event, Create Thread, Return.

SEVENTH CHAPTER: VALIDATION

Validating Process-Oriented Modelling Mechanisms

The validation framework had to follow the current trend in service-oriented engineering - in the original meaning of "service" -, focusing on PoC validation (7.1). In this context, the concepts, approaches, and mechanisms featured in [2] are systematically tested quantitatively in line with the industrial paradigm (7.2). Ending thus the process of validating the thesis ideas, the concepts grouped under the label "Non-algorithmic cybernetic modelling of living systems" (3.3.4) are submitted to service-oriented validation (7.3).

7.1. "Proof-of-Concept" Validation in Service-Oriented Engineering

The intrinsic process nature of any service entailed two (on-going) shifts in software engineering: a) Spawning various Service-Oriented " x ", where x, ranges from application to computing, to engineering, restricting (unduly) meanings and broadening (already existing) confusions (7.1.1). b) Revisiting validation based on PoC applications (the significance of this shift requires a (final) State of the Art (7.1.2). Only on this groundwork can the key problem of assessing service quality in process-oriented software engineering be dealt with (7.1.3). This shapes the framework for the very process of validating [2] as specified below and carried out in the whole chapter.

7.1.1. Service-Oriented " x ": Restricting Meanings and Broadening Confusions

After giving the 23 connotations of service (15 of them as noun) [thefreedictionary.com/ service] adds a usage note: "Aside from specialized senses [...], the verb service is used principally in the sense "to repair or maintain": service the washing machine. In the sense "to supply goods or services to," serve is the correct choice".

Though, a Google Scholar search (July 13, 2013) for "Service-Oriented" gives about 260,000 results, while "User-Oriented" gives only about 55,800 results. The probably reason: while "user-oriented" keeps its traditional meaning, "service-oriented" refers not to "service" in the meaning above but - after limiting excessively its semantics - to "Web service" ("Web services are message-oriented systems based on document exchanges. But the development of web services on both client and server sides is increasingly based on object-oriented implementations" [62].) Thus, the crucial question "Who is the service for?" gets a rather unexpected (and odd) answer, "The software engineer", instead of the habitual one, "The application end user". In other words, the conventional "service provider" is more interested in helping him/herself (with a more convenient application structure) than in helping the user (usually, his/her employer!) who pays for the service (hoping to get a more appropriate application architecture).

To justify the explanation above just one example referring to Service-Oriented " x " (where x stays mainly for architecture but occasionally also for software engineering
or - very telling - for programming): "Service-orientation is a promising paradigm to decompose inward-oriented organisational processes into outward-oriented ITG Service Components [...] In service-oriented software engineering, a component is evolving into a service with standard interfaces for communications and the ability to dynamically locate necessary services at runtime [...] The SOA integrates them into a distributed computing system by means of service-oriented programming" [53].

7.1.2. Validation Revisited: "Proof-of-Concept" Applications. State of the Art

"Proof-of-Concept" is understood as specified in 3.2.4. PoC models became popular even in most advanced exploratory research domains. For instance, [36] presents a "model based bionic muscle with hyperbolic force-velocity relation" in a chaoplex biologic domain (Bionics and Biomechanics): "This proof of concept can be seen as a well-founded starting point for the development of Hill-type artificial muscles" [36].

Therefore, this "State of the Art" refers to the novel subfield of PoC validation - swiftly developing and replacing conventional (prototype-based) validation practice. The following three examples are from 2013 papers in cutting-edge engineering research:

- In "Ceramic matrix composite technology for aircraft turbine engine applications" [37]: "Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation [...] to a system/subsystem or prototype demonstration in a relevant environment" [37].
- In "Intelligent Fiber Optic Systems" [63]: "Finally, a proof-of-concept FBG-based high strain measurement system is developed. [...] These strain data are used to validate our fixture design". [63].
- In "Magnetostrictive aluminum composite with electrically tunable stiffness" [61]: "Shifts in modal frequencies as a function of applied magnetic field for a cantilevered, proof-of-concept composite were measured. [...] The optimized composite shows a threefold increase in modal frequency shifts compared to the proof-of-concept [61].

As a result of this rapidly rising acceptance, appeared an institutional accelerator: "The proof of concept center accelerates the commercialization of innovations out of the university and into the marketplace. It does this by providing seed funding to novel, early stage research that most often would not be funded by any other conventional source" [17].

The main domain where acceleration is needed appears to be validation in SOE.

7.1.3. Assessing Service Quality in Process-Oriented Software Engineering

Concentrating the above to its essence, the problem is to set up a consistent quality valuation framework based on the requirements of PoC validation (7.1.2), removing the hurdles put to user-centred design by distorting the meaning of service (7.1.1),

After abridging the inferences from both 7.1.1 and 7.1.2, such a framework would be:

- Service-oriented means user-oriented. "Services are surely processes. Thus, service-oriented engineering is based on processes. [...] Software Engineering is regarded as adult research subdomain of Computer Science (not just as innovative subdomain of

IT) [and] Service-Oriented refers to Engineering as a whole, key feature of post-industrial engineering (not to Software Engineering, that was always service-oriented)" [14]. Since: a) this stance is fully endorsed by the examples and explanations in 7.1.1; b) it proved to be useless to fight syntagmata spawned within old paradigms, a boundedly rational (hence, simplified) way out - already followed in the section title - is proposed: in the rest of this chapter "process-oriented" should be read as "service-oriented".

- Proving concepts is necessary and sufficient. The assertion refers to research in engineering and is confined below to transdisciplinary modelling. While necessity is self-explaining, sufficiency needs defending. Based on the relevant examples in 7.1.2, the reason is threefold pragmatic, considering the very possibility to: a) continue engineering research in medium-sized East-European universities; b) approach exploratory transdisciplinary research; c) model chaoplex systems.

Hence, the validation framework of [2] is founded on two pillars: a) all thesis and ADT contributions should be "Proof-of-Concept" validated; b) process-oriented software (inherently non-algorithmic) should be comprehensively tested using product-oriented (inherently quantitative), conventional, "generally accepted" validation methods (7.2).

7.2. Quantitative Testing of Magnitudes Needed to Prove Thesis Ideas

To clear up testing, the standoff about product-leaning quantity vs. service-leaning quality is solved pragmatically (7.2.1), explaining the testing approach that follows: A AND $\boldsymbol{\beta}$ ensure together simplified (linear) cybernetic systems stability (7.2.2). On the contrary, the two temporal dimensions - despite aiming both at fighting chaoplexity, making the most of anthropocentrism - are unlike enough to be tested separately: $\boldsymbol{\Delta t}$ illustrates discrete time replacing films by snapshots (7.2.3), while the three features of the (second) time dimension (Delay, Irreversibility, Uncertainty) are even more human(centred) (7.2.4).

7.2.1. Solving Standoff: Product-Leaning Quantity vs. Service-Leaning Quality

To impair misunderstanding, there is neither a logical nor a philosophical dilemma, but a pragmatic explanation that leads to grouping or separating magnitudes to be tested. Thus:

- All assertions about holism/reductionism, chaoplexity/mechanistic model, and so on, are expressed at present tense (that holds for quotations from authorities too (e.g., Stanford Encyclopedia of Philosophy: "in some sense or other, resist reductionist explanation" [21], 6.4.3). In short, it is "ignoramus", not "ignorabimus" (just as in 2.1.1).
- Moreover, all assertions about cognitive chaoplexity (on the whole, 3.3.4, 4.2, 6.2.1) or structural chaoplexity (in biology, 4.2.1) are based on evidence quoted from very recent scholarly papers. In short, it is about "here and now".
- That holds, a fortiori, for [2] and $A D T$ where the contributions to be proved are "macroscopically holistic". (Moreover, it is the only possible approach for a thesis having as pillars "bounded rationality" and "Just in Time", 3.2.2.) In short, chaoplexity - qualitative par excellence - cannot impede quantitative testing.
- Other main ideas to be proved - as new ways to valorise anthropocentrism (6.2.4), or even transdisciplinarity (mainly, when the research domain chosen to illustrate it involves CybMd of living systems, 3.2.4) - are hardly explainable when reducing abstraction level.
- In spite of the above, in software engineering qualitative (holistic) models can be defended by quantitative (reductionist) testing. Thus, testing distinct magnitudes is compatible with interpreting their synergistic effect, meeting the terms of both [1] and O2 (3.1.3, 6.1.1).
- As regards the contributions of $A D T$ as self-contained research, the problem is even simpler: the numeric values used in the implementation steps do have interpretations from PrsU: from PrsUb/e they are already given (6.3.3) and from PrsUw those numeric values must have interpretations to be able to validate a service (7.3.1).

7.2.2. A AND $\boldsymbol{\beta}$ Ensure Simplified (Linear) Cybernetic Systems Stability

The $A N D$ in the title - suggesting the Boolean operator - highlights an immediate example of testing separately and interpreting as one (7.2.1), since stability (even for macrochronically assessed linear systems, 5.1.1, 5.1.2) is unthinkable without feedback (5.2.2) and depends on the value of $\mathbf{1}-\boldsymbol{\beta}^{*} \mathbf{A}(5.1 .1)$, where $\boldsymbol{\beta}^{*} \mathbf{A}$ is the product of two complex numbers. Hence, it is impossible to consider stability as function of only either \mathbf{A} or $\boldsymbol{\beta}$. However:

- Any feedback where β is not a purely negative number with $|\boldsymbol{\beta}|<1$ is outside the scope of testing from both PrsADT and PrsU (in line with the current research targets).
- Both \mathbf{A} and $\boldsymbol{\beta}$ can (and should) be varied for fine-tuning CybMd.
- Even more for modelling homeostasis.
- Even more for using the appliance to devise WISC (central for descriptive scenarios, sine qua non for normative ones).

Therefore testing separately is mandatory but not with the classical method of employing parameters: for software engineers it is ineffectual and for ecologists it is even confusing (see Figure 5.4). To be suitable, a relevant value is looked for to keep the "parameter" constant while modifying the "variable". Before getting from the end user more telling values, the following were used for the first tests (AV2):

- For testing $\mathbf{A}, \boldsymbol{\beta}$ was set at the value of the golden ratio ($\mathbf{0 . 6 1 9}$, estimated as ratio of consecutive Fibonacci numbers: 13/21) because there is (anecdotal) evidence that the reproduction of rabbits in Australia could be related to the Fibonacci series.
- For testing $\boldsymbol{\beta}, \mathbf{A}$ was set at the value of $\mathbf{1 0 0 0}$ because stability is endangered by high amplification rates.

7.2.3. Δt. Discrete Time Fights Chaoplexity Replacing Films by Snapshots

The role of Δt restated in the title, albeit crucial from $\operatorname{Prs} U$ (above all in scenarios), cannot justify testing a magnitude that from PrsADT has (apparently) only technologic role. (Indeed, it is no point to test neither Kotelnikov sampling, nor the SLEEP function.) Moreover, it takes only two values during the validation process: for SLEEP 10 message
(the minimal value, $\mathbf{1} \mathrm{ms}$ is not used in view of fault tolerance) but for the first tests a user-friendly value of 5 sec was used, labelled below Δ tid (from " Δt for interface development").

Though, as the exercise below shows, allowing Δt to take negative values, there are reasons to go beyond the (apparently, exclusively) procedural role of $\boldsymbol{\Delta t}$ (since the reasons emerge clearer after describing how Δt can be used to "predict the system past", the main reasons from PrsADT are presented at the end of 7.2 .3 and those from Prs U in 7.3.1).

Exercise: investigating past evolution of linear cybernetic systems starting from a stable present state. Notations: Ahs: amplification when the homeostatic state is deemed arrived at); \mathbf{A}_{-n} : amplification at the $\boldsymbol{n}^{-t h}$ iteration, (i.e., before $\boldsymbol{n}^{*} \boldsymbol{\Delta} \boldsymbol{t i d}$ or $\boldsymbol{\Delta t i d}$ seconds ago).

Starting from the Barkhausen relation above and replacing \mathbf{A}_{fb} by \mathbf{A}_{hs} and \mathbf{A} by \mathbf{A}_{-1} :
$A_{h s}=A_{-1} /\left(1+\boldsymbol{\beta}^{*} A_{-1}\right)$; where from, $A_{-1}=A_{h s} /\left(1-\boldsymbol{\beta}^{*} A_{h s}\right)$; likewise, for the $\boldsymbol{n}^{-t h}$ iteration:
$\mathbf{A}_{-n}=\mathbf{A}_{-(n-1)} /\left(\mathbf{1}-\boldsymbol{\beta}^{*} \mathbf{A}_{-(n-1)}\right)$. To correlate loop length with the usual (forward) loop (7.2.2), the exit condition is $A_{-n}>\mathbf{1 0 0}^{*} A_{\mathrm{hs}}$. Since it is suitable to examine visually the past system states, the (module of the) sleep duration in the exercise, $-\Delta_{\text {tex }}$, is kept the same as for the first tests: $\operatorname{SLEEP}\left(-\Delta_{\text {tex }}\right)=\operatorname{SLEEP}\left(\Delta \boldsymbol{i}_{t}\right)$.

Reasons (from PrsADT). Using discrete moments going backwards in time shows that:

- The difference between the two temporal dimensions represented by $\boldsymbol{\Delta t}$ and DIU, respectively, is by far not reduced to time granularity.
- $\boldsymbol{\Delta t}$ belongs undisputable to Newtonian time since it is reversible.
- The perceptible reluctance of specialists in robotics and automatic control to accept that they use (albeit implicitly, as in reverse time series) reversible time is groundless.
- If $\operatorname{Im}(\mathfrak{m})=\mathbf{t}$ (5.4.3), the exercise puts an end to "the arrow of time" taboo in software engineering and endorses the claims that "mathematically, $\mathbf{t}=-\mathbf{t}$ has no major consequence [...]. However, from a physical stance, changing the sign of \mathbf{t} means inverting "the arrow of time" (in the meaning given by Eddington)" [14].
- Corollary: it defends implementing WiTi in the appliance, despite the concept has not yet proved its appropriateness for CybMd.

7.2.4. D,I,U. The (Second) Time Features Are Even More Human(Centred)

Studying competitive bicycle pelotons [22] has identified three hysteresis types:

1. "peloton decelerates rapidly [...] followed by a proportionately longer acceleration [(] predictably and periodically, primarily as riders enter and exit corners [...] known as the accordion effect [...] resembles vehicle traffic hysteresis" [22].
2. "peloton speed accelerates rapidly [...] followed by a proportionately longer duration of low flow. [It] is [...] unpredictably and aperiodically [...] characterized by a delay in the reintegration [and] is essentially the inverse process of vehicle traffic hysteresis" [22].
3. "peloton transitions [...] to a period when [...] power output remains roughly constant, such as when [...] riders proceed up sufficiently steep hills and weaker cyclists lose positions in the peloton" [22].
[22] ends: "[1.] results more from [...] adjustments due to [...] constraints [...] externally determined [...]. [2.] is driven largely by limitations in cyclists' competitive fitness and their simultaneously opposing objectives [...]. [3.] results from intrinsic differences in physiological fitness [...]. [P]eloton hysteresis is a selforganizing dynamical process within competitive systems [...]. We may predict these kinds of hysteresis to be observable in rapidly moving herds, flocks, and sperm aggregates, among other biological collectives" [22].

In short, even in simple "competitive systems ", acting in known environments, hysteresis is manifold as both causes it stems from ("externally determined", "opposing objectives", "intrinsic differences in physiological fitness") and effects (from "accordion effect" to system disintegration). Hence, appropriate testing should be focused on the most significant feature of hysteretic delay, BeTi, highlighting its major aspects: unpredictability and irreversibility.

Thus, the leitmotif of counteracting anthropogenic disturbance (4.1.1, 4.1.2, 5.3.3, $5.4 .3,6.1 .2,6.3 .3,6.4 .3$) comes to life representing pollution by the Heaviside function. In the current implementation, because of the Boolean nature of the "event" set by Set Event
(6.4.4), it is defined as function of $\boldsymbol{\tau}$ (the perturbation time, 5.4.3, AV 2).

7.3. Service-Oriented Validation of Cybernetic Modelling Concepts

Ending above the validation of the contributions in [2], the contributions of $A D T$ as self-contained PhD research should be proved too. The architecture to validate is represented by $\boldsymbol{S}_{\boldsymbol{w I S c}}$, the design space for WISC (7.3.1) and is usable via the interface construed as mirror for functionality, enabling the user-validation of $\mathbf{A}, \boldsymbol{\beta}, \boldsymbol{\Delta t}$, and DIU (7.3.2). This is illustrated by two kind of scenarios: descriptive, to interpret facts (7.3.3), and, much more significative, normative, to prepare actions (7.3.4).

7.3.1. Architecture to Validate: Swisc , Design Space for "What-if" Scenarios

Validating $\boldsymbol{S}_{\boldsymbol{w I s c}}$ becomes easier, because it takes advantage of: a) validating above all (old and new) mechanisms ([2], 5.2, 5.3) applied in non-algorithmic CybMd; b) the swiftly rising acceptance of PoC validation in the last years (3.2.4, 7.1.2); c) the undeniable improvement provided by the appliance, when the end-user compares CybMd (as reflected in the toolkit) with the models available before (the predictive models in the recent past); d) quantitative testing (7.2, AV2) the four magnitudes ($\mathbf{A}, \boldsymbol{\beta}, \boldsymbol{\Delta t}$, and DIU) necessary and sufficient for WISC, the toolkit $(6.2,6.4)$ is designed for. (Their interpretation from PrsUw, abridged in 6.4.3, is detailed below.)

- A. Prey population growth as if unimpeded by any hindrance.
- $\boldsymbol{\beta}$. Prey population growth reduction rate due to any factor impeding the current generation to reproduce itself at the same rate as the previous one. In scenarios closer to the - rather utopical - Lotka-Volterra model, the only hindrance is predation. In more
plausible scenarios, the homeostatic state of a benthic community is deemed as arrived at, considering the same environment factors, except predation. In realist scenarios, starting from a homeostatic state in a (partially known) ecologic system, a (new) impairment is usually a (more efficient) functional response of the predator to increased effects of (unexpected) anthropogenic disturbance or (predictable) natural habitat perturbation. Such a scenario yields a new homeostatic state (favouring the predator).
- $\mathbf{A}_{\text {fb }}$. Prey population growth rate in a stable (homeostatic) state. If the impairment is major $\mathbf{A}_{\mathbf{f b}}$ decreases swiftly from the ideal value of \mathbf{A} approaching the level of zero growth.
- $\boldsymbol{\Delta t}$. Normally it is the prey population lifespan. On the other hand, it gives great flexibility to scenarios, allowing "to take samples" of the ecologic system state when desired. Moreover, allowing $\Delta \mathbf{t}$ to take negative values, as suggested above (7.2.3), such samples could predict the system past (via short, boundedly rational, plausible reverse time series). Besides, there are other reasons too, to give semantic value to $\Delta \mathrm{t}$: a) credible scenarios are simple, but simplicity entails discrete time to answer key "What-if" questions (a scenario engaging - even as suggestion - some complicatedness as in Figures 5.3 or 5.4 cannot get user acceptance); b) discrete time is necessary in any memetic engineering exercise involving ecolinguistics (7.3.4); c) it is the only chance of the research toolkit to use the peculiar simplicity of the Lotka-Volterra model in - at least - plausible scenarios.
- DIU. Likewise, besides expressing hysteretic delay in (open-ended) descriptive scenarios, it is very valuable in normative scenarios, to evaluate how the looked-for outcome of an environment preservation action can be reached in a given time span (7.3.4).

7.3.2. Interface, Mirror for Functionality: User-Validating Look and Language

The appliance interface, as research toolkit, has to reflect all the functionality necessary and sufficient to set up WISC for preservation of ecological (sub)systems. Specifically, scenarios aiming at investigating ecologic stability in (oversimplified) benthic communities in Transylvanian lotic systems (3.2.4, 6.1.1, 6.4.1).

In this context, the sliders, menus and buttons presented Figure 7.1, used for quantitative testing $\mathbf{A}, \boldsymbol{\beta}, \boldsymbol{\Delta} \mathbf{t}$, and DIU (6.4.4) should be completed for playing the role of ""Field-researcher guide for devising WISC" (4.1.1, 6.4.3). In this context, cognitive chaoplexity can be substantially reduced taking advantage of the four connotations of "language":

- Natural language. It is to expect that Romanian is favoured for dialog (to ease interaction, above all in field experiments) and English for outputting results (to ease scientific collaboration). That implies "Google-like" versatility in choosing language.
- CybMd language. Choosing GST as Lingua Franca proved to be essential for transdisciplinary collaboration (4.3.2, 5.4.2, 5.4.4). To strengthen the link in practice, all terms used to label interface components should be clear for any intended user category. (Example: acronyms should be avoided as much as possible, despite the need to save space on laptop screens.)
- Language as "memetic carrier". The "(quasi)" prefixing "ecologic language" (4.1.1, 6.4.3) suggests that it is vital to avoid distorting "What-if" questions/answers by dubious memes induced in transdisciplinary language from misunderstood Computer Science language (not just deceiving syntagms like "predictive modelling" but also confusing ones like "service-oriented"), as well as to exploit ecolinguistics (6.1.3, 6.2.1. 6.2.4).
- Language as system of signs (as understood in semiotics). "Based on the concept of "Computer-Aided Semiosis" [...] next to (atemporal) text or images, multimodal interfaces of modern computers could assist humans in understanding complex messages (textual or sign-based, atemporal or temporal)" [6]. Since WISC (despite not being human-to-human communication) are extremely interaction-oriented, several guidelines of [57] about "non-verbal communication (the silent language)", regarding kinesics, haptics, proxemics, or chronemics could be applied in animated images because "language reflects cultural values" [57]. In a larger sense, it is a first step from "Computing with words" towards "Computing with images or sounds". (Example: warnings about pollution could be transmitted using personalised, emotional animations; text could use "telling" fonts as Chiller, iff the end-user deems that the message is better conveyed.)

Figure 7.1. Toolkit interface accepted by the end user at July $19^{\text {th }} 2013$.
While the examples above can be implemented through options available in menus, since they refer rather to personal taste, other choices, depending on the enterprise culture of the (extended) research team, should be "parameterised" only by users having
administrator access rights. (Examples: when an ecologic emergency occurs, what are the urgency degrees from e-mail, to Skype, to SMS, to mobile, to hotline, 7.3.3.)

7.3.3. Descriptive Scenarios for Field Ecology Research: Interpreting Facts

Because ecolinguistics is a crucial $\boldsymbol{S}_{\boldsymbol{w} \boldsymbol{I s} \boldsymbol{c}}$ dimension (6.1.3, 6.2.4, 6.4.3), applying it in scenarios is at hand. Though, descriptive scenarios need clearing up:

- In ecology, describing systems is just a mean to preserve them; thus, action-oriented normative scenarios are understandably preferred over descriptive ones.
- Applying scenarios instead of models to describe a system suggests markedly low model acceptance within the ecologic researcher community (as expected in the case of the strange simplicity of Lotka-Volterra models, 6.4.1, 6.4.2, 7.3.1).
- Even when temporal information is lacking it seems better to sample benthos using real benthometers instead of "virtual benthometers".

However, there are at least two resource-saving reasons to use descriptive scenarios:

- a) Severe lack of time to get temporal information about system evolution.
- b) Easing ecology student laboratory work as required in field ecology research.

Therefore, below are listed some interface features illustrating its suitability for both kind of scenarios, followed by a simple example of an educational scenario.

After launching the toolkit from wherever within a Windows platform computing environment, and granting access rights (at present are only two user categories: administrator and researcher, following the guidelines given in the examples, 7.3.1), the appliance takes control of the screen until the user pushes the "STOP" button (not just to be user-friendly but to reinstate sane application development practices, avoiding uncontrolled computer-human interaction). According to the rights, the user chooses the type of scenario and other menu options (7.3.2) and inputs the desired start values. At this stage of interface development, there are only two scenario choices: descriptive (with input values for $\mathbf{A}, \boldsymbol{\beta}$, and $\boldsymbol{\Delta t}$) and normative (with input values for $\mathbf{A}, \boldsymbol{\beta}, \Delta \mathbf{t}$, and DIU). The input values are taken from the data base for benthic communities in Transylvanian lotic systems (now a fragment in Microsoft Excel is accessible from the appliance).

Example: What could be the growth of the prey population species \boldsymbol{X} in a stable (homeostatic) state ($\boldsymbol{A}_{\mathrm{fb}}$) in interference with the predator species \boldsymbol{Y} if the unimpeded prey population growth is $\mathbf{A}=\mathbf{7 0 0}$, its generation lifespan is $\boldsymbol{\Delta t}=\mathbf{6}$ hours, and three fifths of each generation escapes predation from \boldsymbol{Y} ($\boldsymbol{\beta}=\mathbf{0 . 4})$?

7.3.4. Normative Scenarios for Preserving Benthic Species: Preparing Actions

A fundamental role of ecolinguistics is to convey believable warnings about the risks of neglecting environment preservation measures. Normative scenarios are a means at hand to spread such messages - and are favoured compared to descriptive ones - because they:

- "[T]ake values and interests into account, [...] describe a desirable future or set a specific goal and explore possible ways to reach that goal [and] are useful for finding ways of reaching specified goals or testing alternative policy interventions to see how effective
and efficient they are" [The Environmental Terminology and Discovery Service: glossary. eea.europa.eu/terminology/concept_html?term=normative\ scenario].
- Are more credible - iff assumed as such (6.4.3) - since the subliminal message is "we are people like you, that don't pretend to know all the facts". (The users empathise easier with those - people or even software - that put "What-if" questions.)
- Show (very) reduced cognitive chaoplexity since non-actions are caused rather by lack of political will than by limited technological possibilities (simplicity can be valorised).
- Ease monitoring species behaviour in situ (an environment preservation action is inherently based on controlling states and their variations caused by perturbations).

On the other hand, the CybMd incorporated in the toolkit - despite being intended initially only at describing (hysteretic) delay -, warns against delaying (actions). Thus, it is possible to use DIU to get a first feeling about (plausible processes towards) homeostasis of a benthic predator-prey species pair when the existing homeostatic state was disrupted by anthropogenic disturbance. In other words, it is possible to evaluate how the looked-for (or be afraid of) outcome of an environment preservation action (or inaction) can succeed (or fall through) in the time span described by DIU (7.3.1). Since ecolinguistics is central, a novel memetic engineering exercise is proposed, outlining a scenario aimed at alerting about benthic species unbalance. Yet "unbalance" and "homeostasis" are fundamentally contradictory terms. That requires explaining, because the assertions about homeostasis as "adaptation process triggered by a perturbation" (in the system environment, 4.2.3, 5.3.3) holds but needs illustration to verify whether it is likely or even possible.

Example: How could be affected the system homeostasis in the example above (7.3.3) by a disturbance described by a Heaviside function with $\mathbf{a d}=\mathbf{1 0 0}$, occurred two days ago if the pollution effects are not cleaned up in a week (DIU = $2 \boldsymbol{+} \mathbf{~ d a y s) ? ~}$

EIGHTH CHAPTER: ASSESSMENT

Conclusions and Future Work

Because of the ADT role, context, and content, both Conclusions (8.1) and Future work (8.2) are outlined against distinct dimensions (according to the various " $\operatorname{Prs} X$ ").

8.1. Conclusions

Since fulfilling requirements, i.e., quantitatively validating the contributions of [2] (8.1.1) is the raison d'être of $A D T$, the main conclusions are from PrsADT, following the "validation thread". Next, the transdisciplinary research is evaluated: novel concepts for modelling homeostasis via diverse kinds of time (8.1.2) and building mechanisms and refining methods for illustrating concepts (8.1.3). Ultimately, the two undertakings are assessed integrated under the title of "Non-Algorithmic Cybernetic Modelling of Living Systems" (8.1.4).

8.1.1. Fulfilling Requirements: Quantitatively Validating Thesis Contributions

The "validation thread" to follow, starts with selecting concepts and approaches to be emphasised in relevant modelling (3.2.2) and mechanisms to be demonstrated via PoC software (3.2.3). Then, its direction is established choosing a research domain fitting with the new perspective (3.2.4). After passing through the two transdisciplinary research chapters, the thread is abided by the rationale for (6.1.1) and approach to (6.1.2) the interface as versatile, multifunctional proofing tool (6.2). On this foundation the toolkit functionality (6.3.3) is reflected by the interface, as validation infrastructure (6.4.4). Finally, the PoC validation framework for service-oriented engineering is set up (7.1) and the validation process itself is carried out via quantitative testing of magnitudes needed to prove the contributions in [2] (7.2).

Accordingly, the conclusions about complying with [1], refer the sine qua non category of contributions, updating the conclusions of [2] based on the failed application. For the sake of both, clearness and brevity, the references to section 9.1.2 of [2], "Achievements and Failures", that needed amending are put into curly brackets (" $\}$ ").

- Bounded rationality as both strategy and mechanism. BR was investigated related to \{decision making, behavioural economics\}, approximation, and uncertainty setting up its main role in the post-industrial era: fighting cognitive chaoplexity. Instead of "behavioural economics" is "biology", while "decision making" is not anymore at a general level, being applied in normative scenarios. The \{application domain "Non-deterministic e-Teaching"\} was replaced by "Non-algorithmic cybernetic modelling" and $\{B R$ as "psychological stabiliser"\} with the two much more relevant "biological stabiliser" and "ecological stabiliser".
- "Just in Time": as key requirement for any service providing, hence, a fortiori for (non-trivial) modelling as transdisciplinary service. \{For decision making in chaoplex and
risky situations, even "Rationale 4: precision is harmful" (from a JIT stance)\}. Besides its "first level endorsement" there is a "second level" - albeit rather subliminal - involved in the ecolinguistic discourse backed by (normative) scenario results.
- "BR + JIT". The synergistic effect is obvious when applied to CybMd, as for instance, when testing \mathbf{A} and $\boldsymbol{\beta}$ separately but interpreting the results as one (7.2.2), or when assessing time (discrete-time, BeTi), even at (quantitatively tested) parameter level ($\boldsymbol{\Delta} \mathbf{t}$, DIU).
- GST as: a) Lingua Franca (living systems cannot be investigated without it). b) scientific infrastructure for Cybernetics (crucial processes - for instance, reaching/maintaining stability of ecologic systems - cannot be modelled without it). \{BR was expressed in terms of GST, including the key aspect of BR as feedback\},

In this regard, the enrichment was significant and twofold: a) Instead of using the Lingua Franca for a general metascience (as GST itself) it was used for the science that became the most important successor of GST, namely cybernetics. b) Moreover, this language was applied effectively in software engineering: for instance, the key concept of (negative) feedback expressed by $\boldsymbol{\beta}$ (feedback-network transfer factor) was essential in modelling homeostasis in all stages from giving (adaptable, transdisciplinary) semantic value to modelling, to setting up design space, to mirroring architecture in the interface, to quantitative testing, to validating, to proposing it as key input for WISC.

- Transdisciplinarity. As it was shown (2.3.1, 3.1.1, 3.2.2) servicing other domains is crucial to avoid the syndrome of "solution in search of a problem". \{Choosing GST as Lingua Franca for psychologically-oriented addressees was much more than a linguistic bridge\}. As transdisciplinary research axis of $A D T$, it is assessed in 8.1.2 and 8.1.3.
- User-centeredness. Anthropocentric interfaces are vital. Likewise, detailed in 8.1.3.

8.1.2. Novel Concepts for Modelling Homeostasis via Diverse Species of Time

From PrsADT it is a welcomed but not needed advance in transdisciplinary research, obtained through serendipity and useful as validation framework. On the contrary, from PrsCSIT as one (transdisciplinary research) bridge pillar (Figure 3.1) and PrsUb/e as the other pillar, it is the very research substance (Chapters Four and Five). (From PrsUw it is the unnoticed technological toolkit background.) For clarity, the research results are grouped in three categories: concepts, approaches, mechanisms. For concision, in each category are only three entities, outlined very abridged (below, concepts are dealt with; the other two categories are shown in the next section): Key word/expression (KW), core idea (Cl), practicability ($P C T$) - mainly for software engineering (PCTS) or university education (PCTU), in addition to CSIT curricula (AI, modelling and simulation, software engineering, etc.).

- Concepts. They augment the field of CybMd via diverse kinds of time:

C1. Microchronic modelling stability of linear systems. KW: microchronic stability. Cl: Extending the (atemporal or - at most - synchronic) Barkhausen relation for stability (of amplifiers with feedback loop) to domains where a temporal dimension is unavoidable (i.e., where processes CANNOT be modelled as events). PCTS: modelling living systems
(biology, ecology, medicine - in a large range from clinical measurements to pathodynamics -, as well as in pharmaceutical sciences, automation, robotics, or any other chaoplex, service-oriented application. PCTU: besides the domains cited before, electric engineering, electronic engineering, any domain of GST (above all cybernetics or synergetics).

C2. Discrete-time modelling of living systems. KW: discrete time; time granule. Cl: a) Discrete time is - now and (not only) here - the only way to avoid intractable mathematics (mainly partially suitable differential equations) in modelling. b) The time granule (b1) has semantic value, (b2) is variable within a very large range (e.g., prey population lifespan), (b3) appropriate for WISC (simple movies are a sequence of pictures), (b4) simulating (future or past) discrete events (b5) that occur in BeTi, and (b6) is Kripke-compatible with irreversible time (the time granule $\Delta \mathbf{t}$ belongs undisputable to NeTi since it is reversible). PCTS: Idem. PCTU: Idem plus logic and metamathematics (mainly in line with the Carnap/Tarski model-theoretic approach). (The "Kotelnikov-sampling" potential of the time granule was not investigated; depending on user-interest it could be explored in the future. 8.2.2.)

C3. Correlating distinct temporal dimensions. KW: homeostasis; hysteretic delay; BeTi. CI: Perturbation (anthropogenically caused), as trigger of (ecologic) system homeostasis acts in irreversible time. $\boldsymbol{\tau}$ (perturbation time) and \mathfrak{t} (system time) are not just representations of two (distinct, Newtonian) time functions, but dissimilar temporal dimensions. Their correlation (mainly when hysteretic delay matters) requires non-algorithmic CybMd. PCTS: modelling homeostasis with hysteretic delay (mainly after major disruption of ecosystem homeostasis, in normative scenarios aimed at counteracting anthropogenic disturbances). PCTU: biology, ecology.

8.1.3. Refining Methods and Building Mechanisms for Illustrating Concepts

The approaches and mechanisms set up for confirming the practicability and validity of the new research results are separated from the concepts they should illustrate, not because they are considered marginal, but given that they are only partly original. Thus, "building" means that the innermost mechanism was only modified (with significantly enriched semantics) before being nested in the Matryoshka doll framework together with the two novel mechanisms. As regards "refining", it acknowledges that the only ADT contribution is adjusting conventional approach to both "BR + JIT" viewpoint and current circumstances.

- Approaches. (In parentheses is indicated the standard approach):

A1. Monocrystal approach. (Successive prototyping.) From both PrsADT and PrsUb/e, the "proof of concept" approach entails a series of very short-lived "interface design" variants, looping in a "cut and try" manner (established in 6.3.1, carried out in 6.3.3) where the toolkit expands continually like a silicon monocrystal.

A2. Separating complexity from complicatedness. (Occam's Razor.) Considering that: a) the only model relevant for homeostasis of predator-prey species pair - albeit its radical simplifications in complexity and extent - is the Lotka-Volterra model (6.4.1); b) in ecologic
modelling the Lotka-Volterra equations overshadow the model adding complicatedness (to conditions, hard to meet in real habitats, 6.4.2); c) all sub-perspectives of PrsU are disregarded (focusing on irrelevant mathematic details, 6.4.3, Figure 5.4), the model was exploited in the only practicable boundedly rational way: for setting up WISC in discrete time, in real-world situations/habitats (7.3.1), based on plausible input data (gathered from recent field experiments or expressing skilled-researcher educated guess, 7.3.3, 7.3.4).

A3. Interface as Factotum. (Anthropocentrism; Scandinavian method; SOE.) To keep the user role as protagonist in SOE, the application functionality is concentrated in the interface (6.3.3), designed not only for ecologic research (adaptable to diverse scenario types, habitats, species, predator-prey interaction modes, 6.4.3) but even as software infrastructure for quantitative testing and, thus, as (technologic) validation framework (6.4.4).

- Mechanisms. They are here only reminded for the sake of completeness because: a) their crucial technologic role was repeatedly emphasised above; b) from a transdisciplinary stance they are less important; c) their second-degree role is revealed in 8.1.4.

M1. ARC (Amplification, Reaction, Coordination) for modelling stability (homeostasis).
M2. ARCH (ARC with Hysteresis), for modelling homeostasis in case of disturbance.
M3. Analog slider for boundedly rational data input (including uncertain, fuzzy data).

8.1.4. Integration: "Non-Algorithmic Cybernetic Modelling of Living Systems"

Returning now to the "validation thread", that means reinterpreting the conclusions about evaluating transdisciplinary research (8.1.2, 8.1.3) from PrsADT, it becomes clear that the Cartesian cut between the research contributions of [2] and ADT research results is not necessary. Here it will be shown that such a categorical separation has to be revisited:

Indeed, stated recurrently as leitmotif of the "validation thread" and set up definitively through the hiatus between product-oriented validation (7.2) and service-oriented validation (7.3), the fracture is neither necessary, nor defendable. That is illustrated by the software engineering mechanisms that embody the essence of the research undertaking as a whole, since their key role cannot be distributed between "validating [2]" and "enabling CybMd". (For instance, the innermost mechanism nested in the Matryoshka structure is developed neither in ADT, nor in [2] but is a prerequisite for both validating and modelling.)

Referring to time spans, the (categorical) opposition product-service appears to be:

- Useful in short range. The contributions of [2] are systematically tested quantitatively in line with the industrial paradigm (7.2) to comply with [1] in letter. On the other hand, the contributions of $A D T$ as self-contained PhD research (grouped under the label "Non-algorithmic cybernetic modelling of living systems) are submitted to service-oriented validation (7.3) to comply with [1] in spirit too (only a relevant application can "emphasise clearly the thesis contributions").
- Unclear in middle range. [2] is titled "Bounded Rationality in Agent Orientation -"Just-In-Time" Visual Pattern Recognition". In fact, "Bounded Rationality" was not ratified in "Agent Orientation" and "Just-In-Time" was not ratified in "Visual Pattern Recognition".

Both - and above all their synergistic blend, "BR + JIT" - were validated in an ad hoc sub-branch of CybMd applied to biology and ecology.

- Unnatural in long range. In the post-industrial era, in both engineering and transdisciplinary research, both are fundamental: $B R$ to fight (mainly, cognitive) chaoplexity and JIT for any service providing. Hence, a fortiori "BR + JIT" is vital for (nontrivial) modelling as transdisciplinary service. (A fortiori for CybMd. A fortiori for non-algorithmic CybMd.)

In short, it can be inferred that, de facto, [2] should be titled: "Bounded Rationality and "Just-In-Time" in Cybernetic Modelling of Living systems" (The de jure aspects are totally outside both the scope and the competence of ADT.)

8.2. Future Work

The targets are ranked on time horizons. Short and middle range aims are labelled intentions (8.2.1) while long range aims are considered just as ideas to think about (8.2.2).

8.2.1. Short and Middle Range Intentions

The toolkit practicability can be substantiated only considering user priorities: the immediate need is to gather field data - above all minimal temporal information for "What-if" scenario input. As a result, the short range intentions refer to university education, having as horizon November 2013. The syllabi topics result from the chain of implications: evolution prediction \rightarrow field (temporal) data \rightarrow research personnel (partially) skilled in working with field evidence \rightarrow students \rightarrow ecolinguistic discourse \rightarrow using (first) and developing (next) WISC \rightarrow toolkit (interface) practice \rightarrow laboratory work \rightarrow basic knowledge about "Ecolinguistics-Based (Normative) Scenarios" (and/or similar topics).

Based on this educational and evidential framework, the middle range intentions regarding software engineering development - can be carried out having as horizon, 2014:

The first major task is reshaping the interface, shifting from the "quantitative-testing-look" to its cardinal role of "Field-researcher guide for devising WISC" (4.1.1, 6.4.3). In this context, the sliders, menus and buttons used for quantitative testing should be completed/updated/relabelled for playing their key role (7.3.2). The first steps should regard:

- Sliders. They will be redesigned for various kinds of input languages (6.4.3) but the psychophysical laws governing cognition will be established empirically ("negociating" with students by "cut-and-try" methods, rather than based on intractable mathematics). First will be redesigned the slider for approximate, uncertain input (whether the variation follows a kind of Weber-Fechner law is not of immediate interest, 8.2.2).
- Menus and buttons. The (quasi)ecologic language (6.4.3) will be continously renewed, in the rhythm of assimilating/demolishing the main ecologic memes ([6], 6.2.4).
- Romanian version of the interface. Will follow the changes above.
- Nonnumeric communication. This first step towards semiotic-oriented interfaces should be extended from sliders to the interface as a whole. The next step in this direction will be nontextual communication (through suggestive icons proposed by students).

For the sake of continuity with the intentions above, nonverbal communication (7.3.2) will be the first idea proposed below for further transdisciplinary research.

8.2.2. Long Range Ideas

The time horizon is set between two years ahead and "if ever" not just because of future contingency, but above all, considering the problems posed by assessing service quality in post-industrial engineering research (7.1.3). The main question before engaging in any transdisciplinary research should be: "Does the matter really matter to the user?" ("user-pulled" research, 2.2.2, 3.1.1). Accordingly, below only the subset of "open questions" in [2] that was approached in ADT and could raise user interest (mainly from the sub-perspectives of biologic or ecologic transdisciplinary research) will be considered:

- Semiotic-oriented interfaces. The trend towards more meaningful, while concise user-application interaction, unavoidable in the context of WISC, should be followed, beyond the last middle-range intention (replacing text by icons), since this communication - albeit nontextual is still verbal (the metaphors are word-based; e.g., "recycle bin", "save", most emoticons). The "psycholinguistic expressiveness" is enhanced by multimodal messages, based on suggestive ecolinguistic discourse. (For instance, a flood alert having a waterfall-like sound associated with short film sequences about a recently flooded town, has a greater "ecolinguistic impact" than a text even written with Chiller font.)
- Memetic engineering. For transdisciplinary research as a whole - and particularly for ecolinguistics in the context of preserving ecologic systems - the task is crucial and threefold: dismantling vicious memes, detaching conflicting memes, clarifying fuzzy memes:
- Vicious memes. Regarding the "State of the Art" about the limits of predictive models (6.2.2) as memetic engineering exercise, the path is set up for annihilating other malicious memes too. Thus, for instance, the recent memetic distortion of "service-oriented" is hard to defeat because it stems from inside software engineering (in 7.1.1 the meme was just exposed, not at all overthrown).
- Conflicting memes. Ecology harbours more conflicting memes than exposed when approaching the toolkit architecture (6.1.3). Transdisciplinary research can help only after basic clarifications will come from ecologists themselves.
- Fuzzy memes. A most difficult situation is when the meme to fight is elusive (a relevant example is the multiple confusion about "biologic time", labelled or not as Bergsonian, 5.4.1). Hopefully, the whole time memeplex will be carefully investigated.

References

Documents and Papers Shaping the Addendum

[1] MINISTERUL EDUCAŢIEI, CERCETĂRII, TINERETULUI ŞI SPORTULUI DIRECŢIA GENERALĂ ÎNVĂŢĂMÂNT SUPERIOR. Ordinul MINISTRULUI EDUCAŢIEI, CERCETĂRII, TINERETULUI ŞI SPORTULUI, Nr. 5743 din 12.09.2012 privind atribuirea titlului de DOCTOR. [Appendix 3]
[2] Fabian, R.D. Bounded Rationality in Agent Orientation - "Just-in-Time" Visual Pattern Recognition. (Doctoral dissertation, PhD Thesis in Computer Science and Information Technology, Sibiu, 2011, Copyright: LBUS, Ralf D. Fabian, http://bcu. ulbsibiu. ro/digitale/doctorate/Ralf_Fabian_Phd_Thesis.pdf), 2011.
[3] "Proof-of-Concept" User-Validation Assessment by Angela Bănăduc [Appendix 4]
[4] Brumar, C.I., R.D. Fabian, M.-J. Manolescu, V. Chiş. Memetic Engineering for Permanent Education in Line with Sustainable Growth. Int. J. of Computers, Communications \& Control, 7, 5, 807-815, http://www.journal.univagora.ro/download/pdf/632.pdf, 2012.
[5] Oprean C., C.I. Brumar, R.D. Fabian, B.E. Bărbat, Memetics in Continuing Education. Rationale, Approach, Examples, 3re International conference on applied social science (ICASS 2013) [proceedings of], Taipei, Taiwan, 2013, VOL 2, pp. 86-92, ISBN 978-1-61275-052-1.
[6] Brumar, C.I., R.D. Fabian, B.E. Bărbat. CSITAO Carnap-like Glossary. (Not updated since September 2011 and interrupted after February 2013.) [http://bcu.ulbsibiu.ro/digitale/doctorate/glossary_csitao.pdf].
[7] Brumar, C.I. Memetic engineering in cybernetic modelling of chaoplex systems. Application: Ecolinguistic discourse in normative scenarios for preserving benthic communities. (In preparation.)
[8] Anand, M., et al. Ecological systems as complex systems: challenges for an emerging science. Diversity 2, 3, 395-410, 2010.
[9] Curtean-Bănăduc A., Olosutean H., The Trichoptera larvae communities' functional feeding structue analysis - indicator of the matter cycling process in the lotic ecosystems. A Carpathian river basin case study, Proceedings of the $11^{\text {th }}$ International Conference on Environment, Ecosystems and Development (EED 2013), pp. 219 - 224, 2013.
[10] Curtean-Bănăduc A., Bănăduc D., Sîrbu I., Predictive modelling of biodiversity - a case study of a second order Carpathian River, Danube News, No. 19, Volume 11, pp. 11 -13, 2009.
[11] Sîrbu I., Curtean-Bănăduc A., Modelling approaches of correlated lotic communities ecological synthetic measures and environmental factors, Acta oecologica, Vol XII, Nr. 1-2, Editura Universităţii "Lucian Blaga" din Sibiu, ISSN 1221-5015, pp. 5-15, 2005.
[12] Bărbat, B.E. DOMINO: Trivalent Logic Semantics in Bivalent Syntax Clothes. Int. J. of Computers, Communications \& Control, 2, 4, 303-313, 2007.
[13] Bărbat, B.E. NEWTON, HUSSERL, WIENER: A Temporal Golden Braid. (Invited paper at ICCCC 2010). Abstracts of ICCCC Papers, International Conference on Computers, Communications \& Control, 12, Agora University Editing House, Oradea, 2010.
[14] Bărbat, B.E. Complex Time for Chaoplex Systems: From Newton to Wiener. Computer Sc. J. of Moldova, 21, 2(62), 2013. (To appear.)
[15] Candolin, U. Population responses to anthropogenic disturbance: lessons from threespined sticklebacks Gasterosteus aculeatus in eutrophic habitats. Journal of Fish Biology, 75, 8, 2108-2121, 2009.
[16] Godin, B., J.P. Lane. (2013). Pushes and Pulls: Hi (S) tory of the Demand Pull Model of Innovation. Science, Technology \& Human Values. Science Technology Human Values Project on the Intellectual History of Innovation Working Paper No. 13, http://www.csiic.ca/PDF/Demand-pull.pdf, 2013.
[17] Gulbranson, C.A., D.B Audretsch. Proof of Concept Centers: Accelerating the Commercialization of University Innovation. http://www.kauffman.org/uploadedFiles /POC _Centers_01242008.pdf, 2008.
[18] Luksha, P.O. Memory as producer of subjective time and space in complex systems. [http://www.mdpi.org/fis2005/], 2005.
[19] Microsoft Developer Network (MSDN). Windows API Reference. 3/25/2010 http://msdn.microsoft.com/en-us/library/aa383749(v=vs.85).aspx, 2010.
[20] Øhrstrøm, P., P. Hasle. "Future Contingents". The Stanford Encyclopedia of Philosophy (Summer 2011 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/sum2011/entries/future-contingents/, 2011.
[21] Sarkar, S. "Ecology", The Stanford Encyclopedia of Philosophy (Spring 2009 Edition), Edward N. Zalta (ed.), plato.stanford.edu/archives/spr2009/entries/ecology/, 2009.
[22] Trenchard, H. Hysteresis in competitive bicycle pelotons. Complex Adaptive Systems - Resilience, Robustness and Evolvability. 2010 AAAI Fall Symposium FS , 130-137, 2010.
[23] Trost, D.C., et al. A model for liver homeostasis using modified mean-reverting Ornstein-Uhlenbeck process. Computational and Mathematical Methods in Medicine, 11, 1, 27-47, 2010.
[24] Bruhn, T. et.al. FORWARD LOOK Systems Biology: a Grand Challenge for Europe. European Science Foundation, 2007.
[25] Wiener, N. Cybernetics. or Control and Communication in the Animal and Machine. MIT Press, Cambridge, 1948.
[26] Wiener, N. The Human Use of Human Beings: Cybernetics and Society. Boston: Houghton Mifflin, 1950; 2nd ed., 1954; New York: Da Capo Press, 1988.

References (published after defending the thesis, December 2 ${ }^{\text {nd }}$, 2011)
[27] Barkhuizen, W.F., J.H.C. Pretorius, L. Pretorius. An integrated systems approach to risk management within a technology-driven industry, using the design structure matrix and fuzzy logic. South African Journal of Industrial Engineering, 23, 2, 202-214, 2012.
[28] Block, M., et al. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions. Global Change Biology, 19, 3, 689-696, 2013.
[29] Borowczyk, H., Lindstedt, P., Manerowski, J. NEWTONIAN AND BERGSONIAN TIME IN TECHNICAL DIAGNOSTICS. Journal of KONES Powertrain and Transport, 19, 2, 61-66, 2012.
[30] Blouin, S. Is Your World Complex? An Overview of Complexity Science and its Potential for Military Applications. Canadian Military Journal,13, 2, 26-36, 2013.
[31] Donohue, I., et al. On the dimensionality of ecological stability. Ecology Letters,16, 4 (April), 421-429, Wiley Online Library, 2013.
[32] Esmaeilzadeh, H., et al. Power challenges may end the multicore era. Communications of the ACM 56, 2, 93-102, 2013.
[33] Farrar, C.R., Todd, M. D. Potential Collaborative Research topics with Korea's Agency for Defense Development. No. LA-UR-12-24296. Los Alamos National Laboratory (LANL). University of California Jacobs School of Engineering (UCSD) Engineering Institute, 2012.
[34] Flanagan, D. Java in a Nutshell. Fifth Edition, O'Reilly Media, Inc., Sebastopol, CA, 2013.
[35] Geritz, S.A.H., M. Gyllenberg. Group defence and the predator's functional response. Journal of mathematical biology, 66, 4-5, 705-717, 2013.
[36] Haeufle, D.F.B., et al. Proof-of-concept: model based bionic muscle with hyperbolic forcevelocity relation. Applied Bionics and Biomechanics, 9, 3, 267-274, 2012.
[37] Halbig, M.C., et al. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications. NASA technical reports. (The NASA server was unavailable for public access in March 2013 "while the agency conducts a review of the site's content to ensure that it does not contain technical information that is subject to U.S. export control laws and regulations"), 2013.
[38] Jinaru, A. The practice of euthanasia - a criminal or compassionate act? Proc. of the Int. Conf. Knowledge and Action within the Knowledge Based Society, 3, (Social and Political Philosophy, Ethics, Psychology and Educational Sciences), 149-167, Baia Mare, 2010.
[39] Gosling J., et al. The Java® Language Specification. Java SE 7 Edition, 2013-02-28, http://docs.oracle.com/javase/specs/jls/se7/html/index.html, 2013.
[40] Koboltschnig, G.R. Climate Research and Adaptation Strategies - Examples from the European Alps. In Dating Torrential Processes On Fans and Cones: Methods and Their Application for Hazard and Risk Assessment. (M. Schneuwly-Bollschweiler, M. Stoffel, F. Rudolf-Miklau, Eds.) Dordrecht ; New York: Springer, 2013.
[41] Koutinas, M., et al.Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology. Computational and Structural Biotechnology Journal 3, 4 [http://dx.doi.org/10.5936/csbj.201210022], 2013.
[42] Microsoft Developer Network (MSDN). NET Development. http://msdn.microsoft. com/enus/library/ff361664.aspx (retrieved May 2013).
[43] Microsoft Developer Network (MSDN). .NET Framework 4.5. http://msdn.microsoft.com/en-us/library/w0x726c2(v=VS.110).aspx, 2013.
[44] Microsoft Developer Network (MSDN).Visual Studio 2012, http://msdn.microsoft.com/enUS/vstudio, 2012.
[45] Microsoft Developer Network (MSDN). .NET Windows Forms References. http://msdn.microsoft.com/en-us/library/ms229608.aspx, 2013.
[46] Morozov, A., J.C. Poggiale. From spatially explicit ecological models to mean-field dynamics: The state of the art and perspectives. Ecological Complexity, 10, 1-11, June 2012.
[47] Chesson, P. Scale transition theory: Its aims, motivations and predictions. Ecological Complexity, 10, 52-68, June 2012.
[48] Romanczuk, P., L. Schimansky-Geier. Mean-field theory of collective motion due to velocity alignment. Ecological Complexity, 10, 83-92, June 2012.
[49] Laland, K.N., et al. More on how and why: cause and effect in biology revisited. Biology \& Philosophy, 1-27, Springer Science+Business Media B.V., 2012.
[50] Ma, Z., et al. Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference. Applied Mathematics and Computation, 219, 15, 7945-7953, 2013.
[51] Ma, Z., et al. The effect of prey refuge in a patchy predator-prey system. Mathematical Biosciences, 243, 1, 126-130, 2013.
[52] Mocciaro Li Destri, A., G.B. Dagnino. Learning to synthesise contradictions: an Austrian approach to bridging time concepts in the strategic theory of the firm. Int. J. of Strategic Change Management, 4, 2, 99-128, Inderscience Publishers, 2012.
[53] Muller, C. Linkage Mechanisms for component-based Services and ITGovernance. Journal of Systems Integration, 4, 1, 3-12, 2013.
[54] Patterson, T. 9.2 Ecosystem Services. FINAL DRAFT 1/9/2013 1[http://gis.fs. fed.us/psw/publications/reports/psw_sciencesynthesis2013/psw_sciencesynthesis] 2013_9_2.pdf], 2013.
[55] Preisser, E.L., J.L. Orrock. The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere, 3(9), art77, http://dx.doi.org/10.1890/ES12-00084.1, 2012.
[56] Raczynski, S., Universidad Panamericana. Object properties in discrete event simulation: Attributes, functions and non-typical behavior.
[http://www.researchgate.net/publication
/235794387_Supplementary_text_for_PSM_and_Bluesss.../file/32bfe51393a1e169b 9.pdf], Mexico City, Mexico, 2013.
[57] Reis, J.L. Multicultural Competency: Verbal and Non Verbal Communication. facweb.northseattle.edu, VerbalandNonverbalComm.ppt, 2012.
[58] Robinson, G.M., D.A. Carson. Applying landscape science to natural resource management. Ecology and Society 18, 1, 32.http://dx.doi.org/10.5751/ES-05639180132, 2013.
[59] de Rigo, D., et al. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling. Geophysical Research, Abstracts 15, EGU General Assembly, 2013.
[60] Scharl, A. et al. Media Watch on Climate Change - Visual Analytics for Aggregating and Managing Environmental Knowledge from Online Sources. 46th Hawaii International Conference on System Sciences, 955-964, Maui, Hawaii [http://eprints.weblyzard.com/63/] Official URL: http://www.ecoresearch.net/climate, 2013.
[61] Scheidler, J., M.J. Dapino,. Magnetostrictive aluminum composite with electrically tunable stiffness. Proceedings of SPIE Industrial and Commercial Applications of Smart Structures Technologies, 8690, Abstracts, 74, 2013.
[62] Seth, A., Agarwal, H., Singla, A.R. Testing and Evaluation of Service Oriented Systems. arXiv preprint arXiv:1302.1912, 2013.
[63] Wang, G. et al.High-strain measurement using fiber Bragg grating sensors. Proceedings of SPIE Industrial and Commercial Applications of Smart Structures Technologies, 8690, Abstracts, 74, 2013.
[64] Meyer, K.M., Leveau, J.H. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia, 168, 3, 621-629, 2012.
[65] Betrie, G.D. et al. Predicting copper concentrations in acid mine drainage: a comparative analysis of five machine learning techniques. Environmental Monitoring , Springer, 2012.
[66] Sayama, H., Komura, H., Kogayu, M. Application of Hybrid Approach Based on Empirical and Physiological Concept for Predicting Pharmacokinetics in Humans - Usefulness of Exponent on Prospective Evaluation of Predictability. Drug Metabolism and Disposition, 41, 2, 498-507, [http://dmd.aspetjournals.org/content/41/2/498.short], 2013.
[67] Yu, F-L.T. Two perspectives of time in economics: the neoclassical school (Newtonian) versus the Austrian school (Bergsonian). Int. J. of Pluralism and Economics Education, 3, 1, 91-103, Inderscience Publishers, 2012.
[68] Wu, J., et al. A nanotechnology enhancement to Moore's law. Applied Computational Intelligence and Soft Computing, Hindawi Publishing Corporation, 2013, Article ID 426962, 13 pages http://dx.doi.org/10.1155/2013/426962, 2013.

APPENDICES: Code, Test Results, Scenarios, and (a Few) Comments

APPENDIX 1: AV1. Code of threads relevant to validation

Framework for describing API functions necessary for minimal multithreading [19]:
a) API function syntax. b) Relevant parameters for the current version (July 19 th , 2013 (commenting semantics and/or values). c) Idem for possible changes in November 2013, after testing the toolkit in laboratory work.

- Sleep. a)

```
VOID WINAPI Sleep(
    In_ DWORD dwMilliseconds
);
```

b) dwMilliseconds. Referred to as " $\Delta \mathbf{t}$ ". Semantics as step in FOR loop: time granule (in discrete microchronic view). Values used: $10 \mathrm{~ms}, 5 \mathrm{sec}$ (reasons in 7.2.3)
c) Semantics: species life span; time granule for "Kotelnikov-sampling". For fine-tuning discrete time testing it has no value limits but a set of magnitude units to select from: \{seconds, minutes, hours, weeks, months\}.

- Wait. a)

DWORD WINAPI WaitForSingleObject(
In HANDLE hHandle,
In DWORD dwMilliseconds
);
b) Second dwMilliseconds. Referred to as "DIU". Semantics:
b1) "Delay" facet: usual time-out interval (used mainly for hysteretic delay),
b2) "Irreversibility" facet: conveyed together with Set Event (see below),
b3) "Uncertainty" facet: asynchronous time-out interval, applying the exception exit of the trivalent IF in (mainly) Kleene connotation ("u" interpreted as "temporary lack of knowledge") meaning for the user: "UNCERTAIN in the time span given" (it did not happened yet)
c) Possible future facet, "Creativity" (not outlined yet): applying the third IF value in (mainly) Łukasiewicz connotation ("i" interpreted as "unknowable" or "problematical") meaning for the user: "VAGUE in the time span given".

- Set Event. a)

BOOL WINAPI SetEvent (
In HANDLE hEvent
);
b) hEvent. Referred to as "event". Semantics: "something happened in the (real world) environment", expressing thus a simple form of irreversibility (any "Undo" is excluded). The event has Boolean nature (despite its syntactic expression as integer event handle) and must be set by a thread not synchronised with the waiting thread.
c) For expressing the "I" facet of DIU, (i.e., time span in irreversible, Bergsonian, time) SetEvent will be exploited also for perturbation functions other than the Heaviside function, expressing pollution in the current implementation (AV2).

For exclusively technological reasons, the next two API functions are necessary too:

- Reset Event. a)

BOOL WINAPI ResetEvent(
In HANDLE hEvent
);
Necessary for system (re)initialising (in testing) and for system rebirth ("big bang" in "What-if" scenarios).

- Create Thread. a)

```
HANDLE WINAPI CreateThread(
    _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
    _In_ SIZE_T dwStackSize,
    _In_ LPTHREAD_START_ROUTINE lpStartAddress,
    _In_opt_ LPVOID lpParameter,
    _In_ DWORD dwCreationFlags,
    _Out_opt_ LPDWORD lpThreadId
);
```

Necessary to: a) implement minimal multithreading; b) correlate distinct time dimensions without affecting (through inappropriate synchronization) model operation; c) allow developing flexible "What-if" scenarios.

"Return" as: A) service-oriented mechanism; B) dynamic exception propagator

Java instruction syntax [39]:

```
ReturnStatement:
    return Expressionopt ;
```

- A) Return (-1).

Role: Message to the user: "service failed".

- B) Return (-4).

Role: Message to the caller: "exception occurred".
Necessary to exit the thread that emulates dynamic exception propagation: it exits a simulated exception handler, since Java syntax forbids exiting from an exception handler by "return Expression" (as allowed for any other programming entity).
(Because after debugging DOMINO not all exit codes proved to be necessary, "-2" and "-3" are yet unused and kept for future development in November 2013.)

```
HANDLE hIterationThread; // thread for Iterations
HANDLE hDecisionThread; // thred for decisions
HANDLE hTesterThread; // thread for testing
DWORD WINAPI IterationThreadProc(LPVOID lpParam);
DWORD WINAPI DecisionThreadProc(LPVOID lpParam);
DWORD WINAPI TesterThreadProc(LPVOID lpParam);
BOOL checkHomeostaticState(double dVal);
INT domino();
// macrochronic version
INT domino(){
```

```
    INT RetVal;
```

 INT RetVal;
 // return value propagating the possible exception in DOMONO, means:
 // return value propagating the possible exception in DOMONO, means:
 // RetVal == 0 - the event waited for occured before timeout duration elapsed time;
 // RetVal == 0 - the event waited for occured before timeout duration elapsed time;
 // no exception
 // no exception
 // RetVal == -1 - homeostatic state not attained but still good chances (system
 // RetVal == -1 - homeostatic state not attained but still good chances (system
 // stabilizabil in due time),
 // stabilizabil in due time),
 // RetVal == -2 - homeostatic state not attained microchronicaly (in current
 // RetVal == -2 - homeostatic state not attained microchronicaly (in current
 // interration) but still good chances (system stabilizabil in due time)
 // interration) but still good chances (system stabilizabil in due time)
 // RetVal == -3 - homeostatic state not attained microchronicaly (forlast itteration)
 // RetVal == -3 - homeostatic state not attained microchronicaly (forlast itteration)
 // but still good chances (system stabilizabil in due time)
 // but still good chances (system stabilizabil in due time)
 // RetVal == -4 - the event did not occur in due time; exception raised
 // RetVal == -4 - the event did not occur in due time; exception raised
 // (simulated/propagated via return value)
 // (simulated/propagated via return value)
 INT dwWaitResult;
 INT dwWaitResult;
 // dwWaitResult == WAIT_TIMEOUT means: since timeout elapsed (simulated) exception is
 // dwWaitResult == WAIT_TIMEOUT means: since timeout elapsed (simulated) exception is
 // rased
 // rased
 // dwWaitResult == WAIT_OBJECT_0 means: event happend before timeout duration elapsed
 // dwWaitResult == WAIT_OBJECT_0 means: event happend before timeout duration elapsed
 // (here less then dwTimeout/1000 s)
 // (here less then dwTimeout/1000 s)
 ResetEvent(hEventObject);
 ResetEvent(hEventObject);
 // hEventObject denotes the manner WAIT terminates
 // hEventObject denotes the manner WAIT terminates
 dwWaitResult = WaitForSingleObject(hEventObject, dwTimeout);
 dwWaitResult = WaitForSingleObject(hEventObject, dwTimeout);
 //dwTimeout - Wait duration (ms)
 //dwTimeout - Wait duration (ms)
 if(dwWaitResult == WAIT_OBJECT_0)
 if(dwWaitResult == WAIT_OBJECT_0)
 {
 {
 // bivalent IF (favorable wait termination)
 // bivalent IF (favorable wait termination)
 if(homeostaticState){
 if(homeostaticState){
 RetVal = 0;
 RetVal = 0;
 // SUCCESS, system stable
 // SUCCESS, system stable
 }
 }
 else{
 else{
 // inform caller
 // inform caller
 // homeostatic state not attained but still good chances
 // homeostatic state not attained but still good chances
 RetVal = -1;
 RetVal = -1;
 }
 }
 }
}
else{
else{
// event not occured in due time
// event not occured in due time
RetVal = -4;
RetVal = -4;
}
}
return RetVal;
return RetVal;
// return t1-t6 == t0, hence retunr -1, -2, -3 have same meaning
// return t1-t6 == t0, hence retunr -1, -2, -3 have same meaning
}

```
```

DWORD WINAPI TesterThreadProc(LPVOID lpParam){
Sleep(2000);
SetEvent(hEventObject);
return 1;
}
DWORD WINAPI DecisionThreadProc(LPVOID lpParam){
DWORD dResult;
BOOL bStopped = FALSE;
dwTimeout*=1000; //ms to sec
do{
dResult = domino();
switch(dResult){
case 0:
bStopped = TRUE;
//MessageBox::Show("0");
break;
case -1:
bStopped = FALSE;
//MessageBox::Show("-1");
SetEvent(hContinueEvent);
break;
case -4:
bStopped = TRUE;
MessageBox::Show("Big problem! (Simulated exception)");
}
}
while(!bStopped);
ProjectGUI::MainForm::autoRef->BeginInvoke(ProjectGUI::MainForm::autoRef-
>updateDecisionMsgDelegate,"Decision terminated: "+dResult);
return dResult;
}

```

\section*{APPENDIX 2: AV2. Quantitative testing results}

Possible semantics of the tested magnitudes:
- A. PrsUb/e: (uncontrolled) growth; gross reproduction rate. PrsADT: amplification factor. PrsCSIT: real number associated to a cybernetic amplifier CA (according to the theorem in 5.2.1).
- \(\boldsymbol{\beta}\). PrsUb/e: growth reduction rate; species adaptation rate to habitat perturbation, aiming to achieve a homeostatic state (not necessarily the previous one). PrsADT: transfer factor of the feedback network. PrsCSIT: real number ( \(\mid \boldsymbol{\beta} \boldsymbol{\beta} \mathbf{< 1}\) ) associated to a cybernetic amplifier CA (according to the theorem in 5.2.1).
- \(\mathbf{A}_{\text {fb }}\). PrsUb/e: (sustainable) growth rate; reproduction rate in stable (homeostatic) state. Because of ecologic chaoplexity, it is difficult to define it, depending on various, unknown and dynamic factors as: fertility of (a particular) prey species after interference with (a particular) predator species, mortality (caused by all causes, including predation, lack of food, anthropogenic pollution, and so on), biologic evolution/decline, immigration/emigration, mutation, as well as other hard to assess rates (6.4.3). PrsADT: feedback amplification factor. PrsCSIT: similar to \(\mathbf{A}\), but in a specific, dynamic context.
- \(\boldsymbol{\Delta t}\). PrsUb/e: minimum time span for observable biologic changes; usually, generation lifespan. PrsADT: interval between two successive discrete time moments (microchronic view); \(\boldsymbol{\Delta t}\)--> \(\mathbf{0}\) (macrochronic view). PrsCSIT: modelling time granularity (e.g., in deterministic Lotka-Volterra-like models it tends towards time derivatives, 5.3.2, 6.4.1).

DIU. PrsUb/e: hysteretic delay; time required to start adapting to perturbation (usually, in case of counteracting anthropogenic disturbance). PrsADT: time span (in perturbation, irreversible, Bergsonian, time) between perturbation occurrence and feedback start. PrsCSIT: WAIT with non-algorithmic TIMEOUT: WAIT is terminated irreversibly in both cases (either system reaction or exception).
- Heaviside function. \(\boldsymbol{H}(\boldsymbol{\tau})=\mathbf{0}\) for \(\boldsymbol{\tau}<\boldsymbol{\tau}_{\mathbf{0}}\) (the moment in \(\boldsymbol{\tau}\) when perturbation occurs)
\(\boldsymbol{H}(\boldsymbol{\tau})=\boldsymbol{a d}\) for \(\boldsymbol{\tau}>\boldsymbol{\tau}_{\mathbf{0}}\) (ad, from anthropogenic disturbance, is a constant representing pollution intensity; thus, hysteretic delay can be tested as function of perturbation intensity, useful to parameterise realist WISC, 7.3.4).

For testing purposes, \(\boldsymbol{H}(\boldsymbol{\tau})\) could remain undefined for \(\boldsymbol{\tau}=\mathbf{0}\). However, since for future work it is convenient to define \(\boldsymbol{H}(\boldsymbol{\tau})\) as sigmoid function limit, \(H(\boldsymbol{\tau})=1 / 2\) for \(\boldsymbol{\tau}=\boldsymbol{\tau}_{\mathbf{0}}\).

For all tests the homeostatic state was considered arrived at, when the feedback amplification factor, calculated according to the Barkhausen relation (for negative feedback), \(A_{f b}=A /\left(1+\beta^{*} A\right)\), varies with less than \(1 \%\) from one iteration to the next one.

Benthic quantitative data from several sampling stations together with biotope characteristics were used in "What-if" scenarious to analyse the influence of chemical oxygen demand (COD-Mn) the density of filtrators (FDs). [9][10][11]

Sampling station id: S4; Input Viin: 116.78; A: 23; Beta: 0.2; DeltaA: 0.001
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline t & Afb & Output(Vo) & DeltaA & AfbGoldR & DeltaAfbGoldr & OutputGoldR & DeltaAfbAfbG \\
\hline 0 & 0 & 2685.94 & 23 & 0 & 23 & 2685.94 & 0 \\
\hline 1 & 4.107142857 & 479.6321429 & 18.89285714 & 1.509375 & 21.490625 & 176.2648125 & 2.597767857 \\
\hline 2 & 2.254901961 & 263.327451 & 1.852240896 & 0.780290792 & 0.729084208 & 91.12235864 & 1.474611169 \\
\hline 3 & 1.554054054 & 181.4824324 & 0.700847907 & 0.526143791 & 0.254147001 & 61.4430719 & 1.027910263 \\
\hline 4 & 1.18556701 & 138.4505155 & 0.368487044 & 0.396877568 & 0.129266223 & 46.34736237 & 0.788689443 \\
\hline 5 & 0.958333333 & 111.9141667 & 0.227233677 & 0.318601583 & 0.078275985 & 37.20629288 & 0.63973175 \\
\hline 6 & 0.804195804 & 93.91398601 & 0.154137529 & 0.266115702 & 0.052485881 & 31.07699174 & 0.538080102 \\
\hline 7 & 0.692771084 & 80.90180723 & 0.11142472 & 0.228476821 & 0.037638881 & 26.68152318 & 0.464294263 \\
\hline 8 & 0.608465608 & 71.05661376 & 0.084305476 & 0.200165769 & 0.028311052 & 23.37535847 & 0.40829984 \\
\hline 9 & 0.54245283 & 63.34764151 & 0.066012778 & 0.178097345 & 0.022068424 & 20.79820796 & 0.364355485 \\
\hline 10 & 0.489361702 & 57.14765957 & 0.053091128 & 0.160411823 & 0.017685522 & 18.73289273 & 0.328949879 \\
\hline 11 & 0.445736434 & 52.05310078 & 0.043625268 & 0.14592145 & 0.014490373 & 17.04070695 & 0.299814984 \\
\hline 12 & 0.409252669 & 47.79252669 & 0.036483765 & 0.133832086 & 0.012089364 & 15.62891106 & 0.275420583 \\
\hline 13 & 0.378289474 & 44.17664474 & 0.030963195 & 0.123592631 & 0.010239456 & 14.43314739 & 0.254696843 \\
\hline 14 & 0.351681957 & 41.06941896 & 0.026607516 & 0.114808652 & 0.008783978 & 13.40735441 & 0.236873305 \\
\hline 15 & 0.328571429 & 38.37057143 & 0.023110529 & 0.107190413 & 0.007618239 & 12.5176964 & 0.221381016 \\
\hline 16 & 0.308310992 & 36.00455764 & 0.020260437 & 0.100520291 & 0.006670121 & 11.73875963 & 0.207790701 \\
\hline 17 & 0.29040404 & 33.91338384 & 0.017906952 & 0.094631661 & 0.00588863 & 11.05108542 & 0.195772379 \\
\hline 18 & 0.274463007 & 32.05178998 & 0.015941033 & 0.089394781 & 0.005236881 & 10.43952249 & 0.185068226 \\
\hline 19 & 0.260180995 & 30.38393665 & 0.014282012 & 0.08470712 & 0.00468766 & 9.89209751 & 0.175473875 \\
\hline 20 & 0.247311828 & 28.88107527 & 0.012869168 & 0.080486586 & 0.004220535 & 9.399223463 & 0.166825242 \\
\hline 21 & 0.235655738 & 27.51987705 & 0.01165609 & 0.076666667 & 0.003819919 & 8.953133333 & 0.158989071 \\
\hline 22 & 0.225048924 & 26.28121331 & 0.010606814 & 0.073192908 & 0.003473759 & 8.547467798 & 0.151856016 \\
\hline 23 & 0.215355805 & 25.14925094 & 0.009693118 & 0.070020296 & 0.003172612 & 8.176970136 & 0.14533551 \\
\hline 24 & 0.206463196 & 24.11077199 & 0.00889261 & 0.067111296 & 0.002908999 & 7.83725719 & 0.139351899 \\
\hline 25 & 0.198275862 & 23.15465517 & 0.008187334 & 0.064434365 & 0.002676931 & 7.524645144 & 0.133841497 \\
\hline 26 & 0.190713101 & 22.27147595 & 0.007562761 & 0.061962797 & 0.002471568 & 7.236015394 & 0.128750304 \\
\hline 27 & 0.18370607 & 21.45319489 & 0.007007031 & 0.059673832 & 0.002288964 & 6.968710156 & 0.124032238 \\
\hline 28 & 0.177195686 & 20.69291217 & 0.006510385 & 0.057547957 & 0.002125876 & 6.720450375 & 0.119647729 \\
\hline 29 & 0.171130952 & 19.98467262 & 0.006064733 & 0.055568339 & 0.001979618 & 6.489270594 & 0.115562614 \\
\hline 30 & 0.165467626 & 19.32330935 & 0.005663326 & 0.053720387 & 0.001847952 & 6.2734668 & 0.111747239 \\
\hline 31 & 0.160167131 & 18.70431755 & 0.005300495 & 0.051991389 & 0.001728998 & 6.07155436 & 0.108175742 \\
\hline 32 & 0.155195682 & 18.12375169 & 0.004971449 & 0.050370216 & 0.001621173 & 5.88223381 & 0.104825466 \\
\hline 33 & 0.15052356 & 17.57814136 & 0.004672121 & 0.048847087 & 0.001523128 & 5.704362864 & 0.101676473 \\
\hline 34 & 0.146124524 & 17.06442186 & 0.004399037 & 0.04741337 & 0.001433717 & 5.536933346 & 0.098711154 \\
\hline 35 & 0.141975309 & 16.57987654 & 0.004149215 & 0.046061415 & 0.001351955 & 5.379052069 & 0.095913893 \\
\hline 36 & 0.138055222 & 16.12208884 & 0.003920087 & 0.044784423 & 0.001276992 & 5.229924896 & 0.093270799 \\
\hline 37 & 0.134345794 & 15.68890187 & 0.003709428 & 0.043576326 & 0.001208097 & 5.088843378 & 0.090769468 \\
\hline 38 & 0.130830489 & 15.27838453 & 0.003515305 & 0.042431696 & 0.00114463 & 4.955173504 & 0.088398793 \\
\hline 39 & 0.127494457 & 14.88880266 & 0.003336032 & 0.04134566 & 0.001086036 & 4.828346174 & 0.086148797 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 40 & 0.124324324 & 14.51859459 & 0.003170132 & 0.04031383 & 0.00103183 & 4.707849094 & 0.084010494 \\
\hline 41 & 0.121308017 & 14.16635021 & 0.003016307 & 0.039332248 & 0.000981583 & 4.59321987 & 0.081975769 \\
\hline 42 & 0.118434604 & 13.830793 & 0.002873413 & 0.038397329 & 0.000934919 & 4.484040067 & 0.080037275 \\
\hline 43 & 0.115694165 & 13.51076459 & 0.002740439 & 0.037505824 & 0.000891505 & 4.379930113 & 0.078188341 \\
\hline 44 & 0.113077679 & 13.20521141 & 0.002616486 & 0.036654777 & 0.000851047 & 4.280544889 & 0.076422902 \\
\hline 45 & 0.110576923 & 12.91317308 & 0.002500756 & 0.035841496 & 0.000813281 & 4.185569902 & 0.074735427 \\
\hline 46 & 0.108184384 & 12.63377234 & 0.002392539 & 0.035063521 & 0.000777975 & 4.094717967 & 0.073120863 \\
\hline 47 & 0.105893186 & 12.36620626 & 0.002291198 & 0.034318602 & 0.000744919 & 4.007726304 & 0.071574584 \\
\hline 48 & 0.103697024 & 12.1097385 & 0.002196162 & 0.033604675 & 0.000713926 & 3.924353997 & 0.070092349 \\
\hline 49 & 0.101590106 & 11.86369258 & 0.002106918 & 0.032919847 & 0.000684828 & 3.844379771 & 0.068670259 \\
\hline 50 & 0.0995671 & 11.62744589 & 0.002023006 & 0.032262374 & 0.000657473 & 3.767600027 & 0.067304726 \\
\hline 51 & 0.09762309 & 11.40042445 & 0.00194401 & 0.031630648 & 0.000631726 & 3.693827112 & 0.065992442 \\
\hline 52 & 0.095753539 & 11.18209825 & 0.001869551 & 0.031023187 & 0.000607461 & 3.62288779 & 0.064730352 \\
\hline 53 & 0.093954248 & 10.97197712 & 0.00179929 & 0.030438619 & 0.000584568 & 3.554621881 & 0.06351563 \\
\hline 54 & 0.092221331 & 10.76960706 & 0.001732917 & 0.029875673 & 0.000562946 & 3.488881054 & 0.062345659 \\
\hline 55 & 0.090551181 & 10.57456693 & 0.00167015 & 0.029333171 & 0.000542501 & 3.425527754 & 0.06121801 \\
\hline 56 & 0.088940449 & 10.38646558 & 0.001610733 & 0.028810021 & 0.000523151 & 3.364434238 & 0.060130428 \\
\hline 57 & 0.087386018 & 10.20493921 & 0.00155443 & 0.028305204 & 0.000504817 & 3.305481716 & 0.059080814 \\
\hline 58 & 0.085884989 & 10.02964899 & 0.001501029 & 0.027817773 & 0.000487431 & 3.248559581 & 0.058067215 \\
\hline 59 & 0.084434655 & 9.860279001 & 0.001450334 & 0.027346846 & 0.000470927 & 3.193564715 & 0.057087809 \\
\hline 60 & 0.083032491 & 9.696534296 & 0.001402164 & 0.026891598 & 0.000455248 & 3.140400869 & 0.056140893 \\
\hline 61 & 0.081676136 & 9.538139205 & 0.001356355 & 0.02645126 & 0.000440339 & 3.088978094 & 0.055224877 \\
\hline 62 & 0.080363382 & 9.384835779 & 0.001312754 & 0.026025109 & 0.00042615 & 3.039212242 & 0.054338273 \\
\hline 63 & 0.07909216 & 9.236382393 & 0.001271223 & 0.025612472 & 0.000412637 & 2.991024499 & 0.053479687 \\
\hline 64 & 0.077860528 & 9.092552471 & 0.001231631 & 0.025212716 & 0.000399756 & 2.944340972 & 0.052647812 \\
\hline 65 & 0.076666667 & 8.953133333 & 0.001193861 & 0.024825247 & 0.000387469 & 2.899092311 & 0.05184142 \\
\hline 66 & 0.075508864 & 8.817925148 & 0.001157803 & 0.024449506 & 0.00037574 & 2.855213364 & 0.051059358 \\
\hline 67 & 0.074385511 & 8.686739974 & 0.001123353 & 0.024084971 & 0.000364536 & 2.812642864 & 0.05030054 \\
\hline 68 & 0.073295092 & 8.559400892 & 0.001090419 & 0.023731145 & 0.000353825 & 2.771323146 & 0.049563947 \\
\hline 69 & 0.072236181 & 8.435741206 & 0.001058912 & 0.023387565 & 0.00034358 & 2.731199884 & 0.048848616 \\
\hline 70 & 0.07120743 & 8.315603715 & 0.001028751 & 0.023053792 & 0.000333773 & 2.692221851 & 0.048153638 \\
\hline 71 & 0.07020757 & 8.198840049 & 0.00099986 & 0.022729412 & 0.00032438 & 2.654340706 & 0.047478158 \\
\hline
\end{tabular}

Sampling station id: S4; Input Viin: 116.78; A: 23; Beta: 0.03; DeltaA: 0.01;
\begin{tabular}{|r|r|r|r|r|r|r|r|}
\hline \multicolumn{1}{|l|}{\(\mathbf{t}\)} & Afb & \multicolumn{1}{l|}{ Output(Vo) } & \multicolumn{1}{l|}{ DeltaA } & \multicolumn{1}{l|}{ AfbGoldR } & \multicolumn{1}{l|}{ DeltaAfbGoldR } & \multicolumn{1}{l|}{ OutputGoldR } & \multicolumn{1}{l}{ DeltaAfbAfbG } \\
\hline \hline 0 & 0 & 2685.94 & 23 & 0 & 23 & 2685.94 & 0 \\
1 & 8.812260536 & 1029.095785 & 14.18773946 & 1.509375 & 21.490625 & 176.2648125 & 7.302885536 \\
2 & 5.450236967 & 636.478673 & 3.36202357 & 0.780290792 & 0.729084208 & 91.12235864 & 4.669946175 \\
3 & 3.945111492 & 460.7101201 & 1.505125475 & 0.526143791 & 0.254147001 & 61.4430719 & 3.418967701 \\
4 & 3.091397849 & 361.0134409 & 0.853713643 & 0.396877568 & 0.129266223 & 46.34736237 & 2.694520282 \\
5 & 2.541436464 & 296.7889503 & 0.549961385 & 0.318601583 & 0.078275985 & 37.20629288 & 2.222834881 \\
6 & 2.157598499 & 251.9643527 & 0.383837965 & 0.266115702 & 0.052485881 & 31.07699174 & 1.891482797 \\
7 & 1.874490628 & 218.9030155 & 0.283107872 & 0.228476821 & 0.037638881 & 26.68152318 & 1.646013806 \\
8 & 1.657060519 & 193.5115274 & 0.217430109 & 0.200165769 & 0.028311052 & 23.37535847 & 1.45689475 \\
9 & 1.484828922 & 173.3983215 & 0.172231597 & 0.178097345 & 0.022068424 & 20.79820796 & 1.306731577 \\
10 & 1.34502924 & 157.0725146 & 0.139799682 & 0.160411823 & 0.017685522 & 18.73289273 & 1.184617416
\end{tabular}
\begin{tabular}{|r|r|r|r|r|r|r|r|}
11 & 1.22928915 & 143.556387 & 0.11574009 & 0.14592145 & 0.014490373 & 17.04070695 & 1.0833677 \\
12 & 1.131889764 & 132.1820866 & 0.097399386 & 0.133832086 & 0.012089364 & 15.62891106 & 0.998057677 \\
13 & 1.04879161 & 122.4778842 & 0.083098154 & 0.123592631 & 0.010239456 & 14.43314739 & 0.925198979 \\
14 & 0.977060323 & 114.1011045 & 0.071731287 & 0.114808652 & 0.008783978 & 13.40735441 & 0.862251671 \\
15 & 0.914512922 & 106.7968191 & 0.0625474 & 0.107190413 & 0.007618239 & 12.5176964 & 0.80732251 \\
16 & 0.859491779 & 100.3714499 & 0.055021144 & 0.100520291 & 0.006670121 & 11.73875963 & 0.758971487 \\
17 & 0.810715545 & 94.6753613 & 0.048776234 & 0.094631661 & 0.00588863 & 11.05108542 & 0.716083883 \\
18 & 0.767178119 & 89.59106071 & 0.043537426 & 0.089394781 & 0.005236881 & 10.43952249 & 0.677783338 \\
19 & 0.728078506 & 85.02500791 & 0.039099613 & 0.08470712 & 0.00468766 & 9.89209751 & 0.643371386 \\
20 & 0.692771084 & 80.90180723 & 0.035307422 & 0.080486586 & 0.004220535 & 9.399223463 & 0.612284499 \\
21 & 0.660729675 & 77.16001149 & 0.032041409 & 0.076666667 & 0.003819919 & 8.953133333 & 0.584063009 \\
22 & 0.631521142 & 73.74903899 & 0.029208533 & 0.073192908 & 0.003473759 & 8.547467798 & 0.558328234 \\
23 & 0.604785696 & 70.62687352 & 0.026735447 & 0.070020296 & 0.003172612 & 8.176970136 & 0.5347654 \\
24 & 0.580221998 & 67.75832492 & 0.024563698 & 0.067111296 & 0.002908999 & 7.83725719 & 0.513110702 \\
25 & 0.557575758 & 65.11369697 & 0.02264624 & 0.064434365 & 0.002676931 & 7.524645144 & 0.493141393 \\
26 & 0.536630891 & 62.66775548 & 0.020944866 & 0.061962797 & 0.002471568 & 7.236015394 & 0.474668095 \\
27 & 0.517202609 & 60.39892062 & 0.019428283 & 0.059673832 & 0.002288964 & 6.968710156 & 0.457528776 \\
28 & 0.499131944 & 58.28862847 & 0.018070664 & 0.057547957 & 0.002125876 & 6.720450375 & 0.441583988 \\
29 & 0.482281401 & 56.32082198 & 0.016850544 & 0.055568339 & 0.001979618 & 6.489270594 & 0.426713062 \\
30 & 0.46653144 & 54.48154158 & 0.015749961 & 0.053720387 & 0.001847952 & 6.2734668 & 0.412811053 \\
31 & 0.451777647 & 52.7585936 & 0.014753793 & 0.051991389 & 0.001728998 & 6.07155436 & 0.399786258 \\
32 & 0.437928408 & 51.14127951 & 0.013849239 & 0.050370216 & 0.001621173 & 5.88223381 & 0.387558192 \\
33 & 0.424903011 & 49.62017366 & 0.013025397 & 0.048847087 & 0.001523128 & 5.704362864 & 0.376055924 \\
34 & 0.412630068 & 48.18693936 & 0.012272943 & 0.04741337 & 0.001433717 & 5.536933346 & 0.365216698 \\
35 & 0.401046207 & 46.83417611 & 0.011583861 & 0.046061415 & 0.001351955 & 5.379052069 & 0.354984792 \\
36 & 0.39009498 & 45.55529172 & 0.010951228 & 0.044784423 & 0.001276992 & 5.229924896 & 0.345310557 \\
37 & 0.379725937 & 44.34439491 & 0.010369043 & 0.043576326 & 0.001208097 & 5.088843378 & 0.336149611 \\
38 & 0.369893857 & 43.19620457 & 0.00983208 & 0.042431696 & 0.00114463 & 4.955173504 & 0.32746216 \\
\hline
\end{tabular}

Sampling station id: S7; Input Viin: 202.97; A: 23; Beta: 0.03; DeltaA: 0.001
\begin{tabular}{|r|l|r|r|r|r|r|r|}
\hline \(\boldsymbol{t}\) & \multicolumn{1}{l|}{ Afb } & \multicolumn{1}{l|}{ Output(Vo) } & \multicolumn{1}{l|}{ DeltaA } & \multicolumn{1}{l|}{ AfbGoldR } & \multicolumn{1}{l|}{ DeltaAfbGoldR } & \multicolumn{1}{c|}{ OutputGoldR } & \multicolumn{1}{l|}{ DeltaAfbAfbG } \\
\hline \hline 0 & 0 & 4668.31 & 23 & 0 & 23 & 4668.31 & 0 \\
1 & 13.60946746 & 2762.313609 & 9.390532544 & 1.509375 & 21.490625 & 306.3578438 & 12.10009246 \\
2 & 9.663865546 & 1961.47479 & 3.945601909 & 0.780290792 & 0.729084208 & 158.375622 & 8.883574755 \\
3 & 7.491856678 & 1520.62215 & 2.172008869 & 0.526143791 & 0.254147001 & 106.7914052 & 6.965712887 \\
4 & 6.117021277 & 1241.571809 & 1.374835401 & 0.396877568 & 0.129266223 & 80.55423993 & 5.720143709 \\
5 & 5.168539326 & 1049.058427 & 0.948481951 & 0.318601583 & 0.078275985 & 64.66656332 & 4.849937743 \\
6 & 4.474708171 & 908.2315175 & 0.693831155 & 0.266115702 & 0.052485881 & 54.01350413 & 4.208592469 \\
7 & 3.945111492 & 800.7392796 & 0.529596679 & 0.228476821 & 0.037638881 & 46.3739404 & 3.716634671 \\
8 & 3.527607362 & 715.9984663 & 0.41750413 & 0.200165769 & 0.028311052 & 40.62764608 & 3.327441593 \\
9 & 3.19001387 & 647.4771151 & 0.337593492 & 0.178097345 & 0.022068424 & 36.14841814 & 3.011916524 \\
10 & 2.911392405 & 590.9253165 & 0.278621465 & 0.160411823 & 0.017685522 & 32.55878778 & 2.750980582 \\
11 & 2.677532014 & 543.4586729 & 0.233860391 & 0.14592145 & 0.014490373 & 29.61767674 & 2.531610564 \\
12 & 2.478448276 & 503.0506466 & 0.199083738 & 0.133832086 & 0.012089364 & 27.16389859 & 2.344616189 \\
13 & 2.306920762 & 468.2357071 & 0.171527514 & 0.123592631 & 0.010239456 & 25.08559621 & 2.183328132 \\
14 & 2.157598499 & 437.9277674 & 0.149322263 & 0.114808652 & 0.008783978 & 23.30271215 & 2.042789847
\end{tabular}
\begin{tabular}{|r|r|r|r|r|r|r|r|} 
\\
15 & 2.026431718 & 411.3048458 & 0.131166781 & 0.107190413 & 0.007618239 & 21.75643808 & 1.919241305 \\
16 & 1.910299003 & 387.7333887 & 0.116132715 & 0.100520291 & 0.006670121 & 20.40260354 & 1.809778712 \\
17 & 1.806755695 & 366.7172035 & 0.103543308 & 0.094631661 & 0.00588863 & 19.20738832 & 1.712124034 \\
18 & 1.713859911 & 347.8621461 & 0.092895785 & 0.089394781 & 0.005236881 & 18.14445863 & 1.62446513 \\
19 & 1.63004961 & 330.8511694 & 0.0838103 & 0.08470712 & 0.00468766 & 17.19300421 & 1.54534249 \\
20 & 1.554054054 & 315.4263514 & 0.075995556 & 0.080486586 & 0.004220535 & 16.33636227 & 1.473567468 \\
21 & 1.484828922 & 301.3757263 & 0.069225132 & 0.076666667 & 0.003819919 & 15.56103333 & 1.408162255 \\
22 & 1.421508035 & 288.5234858 & 0.063320887 & 0.073192908 & 0.003473759 & 14.85596454 & 1.348315127 \\
23 & 1.363366924 & 276.7225845 & 0.058141111 & 0.070020296 & 0.003172612 & 14.21201943 & 1.293346628 \\
24 & 1.309794989 & 265.8490888 & 0.053571935 & 0.067111296 & 0.002908999 & 13.62157982 & 1.242683692 \\
25 & 1.260273973 & 255.7978082 & 0.049521016 & 0.064434365 & 0.002676931 & 13.07824306 & 1.195839608 \\
26 & 1.21436114 & 246.4788807 & 0.045912832 & 0.061962797 & 0.002471568 & 12.57658884 & 1.152398344 \\
27 & 1.171676006 & 237.815079 & 0.042685134 & 0.059673832 & 0.002288964 & 12.11199778 & 1.112002174 \\
28 & 1.131889764 & 229.7396654 & 0.039786242 & 0.057547957 & 0.002125876 & 11.68050876 & 1.074341807 \\
29 & 1.094716802 & 222.1946692 & 0.037172962 & 0.055568339 & 0.001979618 & 11.27870571 & 1.039148463 \\
30 & 1.059907834 & 215.1294931 & 0.034808967 & 0.053720387 & 0.001847952 & 10.90362696 & 1.006187447 \\
31 & 1.027244305 & 208.4997767 & 0.032663529 & 0.051991389 & 0.001728998 & 10.55269214 & 0.975252917 \\
32 & 0.996533795 & 202.2664645 & 0.03071051 & 0.050370216 & 0.001621173 & 10.22364272 & 0.94616358 \\
33 & 0.967606226 & 196.3950358 & 0.028927569 & 0.048847087 & 0.001523128 & 9.914493325 & 0.918759139 \\
34 & 0.940310711 & 190.8548651 & 0.027295515 & 0.04741337 & 0.001433717 & 9.623491705 & 0.892897341 \\
35 & 0.914512922 & 185.6186879 & 0.025797789 & 0.046061415 & 0.001351955 & 9.349085447 & 0.868451507 \\
36 & 0.890092879 & 180.6621517 & 0.024420043 & 0.044784423 & 0.001276992 & 9.089894298 & 0.845308456 \\
37 & 0.866943083 & 175.9634376 & 0.023149796 & 0.043576326 & 0.001208097 & 8.844686936 & 0.823366757 \\
38 & 0.844966936 & 171.502939 & 0.021976147 & 0.042431696 & 0.00114463 & 8.612361416 & 0.80253524 \\
39 & 0.824077392 & 167.2629882 & 0.020889544 & 0.04134566 & 0.001086036 & 8.391928608 & 0.782731732 \\
40 & 0.804195804 & 163.2276224 & 0.019881587 & 0.04031383 & 0.00103183 & 8.182498122 & 0.763881974 \\
41 & 0.785250939 & 159.3823831 & 0.018944865 & 0.039332248 & 0.000981583 & 7.983266287 & 0.745918691 \\
42 & 0.767178119 & 155.7141428 & 0.01807282 & 0.038397329 & 0.000934919 & 7.793505843 & 0.72878079 \\
50 & 0.54245283 & 110.1016509 & 0.008973686 & 0.026891598 & 0.000455248 & 5.45818774 & 0.515561232
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 61 & 0.533766535 & 108.3385936 & 0.008686295 & 0.02645126 & 0.000440339 & 5.368812158 & 0.507315276 \\
\hline 62 & 0.525354043 & 106.6311101 & 0.008412492 & 0.026025109 & 0.00042615 & 5.282316396 & 0.499328934 \\
\hline 63 & 0.517202609 & 104.9766134 & 0.008151434 & 0.025612472 & 0.000412637 & 5.198563474 & 0.491590136 \\
\hline 64 & 0.509300266 & 103.3726749 & 0.007902343 & 0.025212716 & 0.000399756 & 5.117424962 & 0.48408755 \\
\hline 65 & 0.501635769 & 101.817012 & 0.007664497 & 0.024825247 & 0.000387469 & 5.038780325 & 0.476810522 \\
\hline 66 & 0.494198539 & 100.3074774 & 0.00743723 & 0.024449506 & 0.00037574 & 4.962516325 & 0.469749032 \\
\hline 67 & 0.486978615 & 98.84204954 & 0.007219924 & 0.024084971 & 0.000364536 & 4.888526479 & 0.462893645 \\
\hline 68 & 0.479966611 & 97.41882304 & 0.007012004 & 0.023731145 & 0.000353825 & 4.816710559 & 0.456235466 \\
\hline 69 & 0.473153672 & 96.03600082 & 0.006812939 & 0.023387565 & 0.00034358 & 4.746974143 & 0.449766107 \\
\hline 70 & 0.46653144 & 94.69188641 & 0.006622232 & 0.023053792 & 0.000333773 & 4.679228199 & 0.443477648 \\
\hline 71 & 0.460092018 & 93.38487698 & 0.006439422 & 0.022729412 & 0.00032438 & 4.613388706 & 0.437362607 \\
\hline 72 & 0.45382794 & 92.11345699 & 0.006264078 & 0.022414033 & 0.000315379 & 4.549376305 & 0.431413907 \\
\hline 73 & 0.447732139 & 90.87619233 & 0.006095801 & 0.022107287 & 0.000306746 & 4.487115983 & 0.425624853 \\
\hline 74 & 0.441797925 & 89.67172493 & 0.005934214 & 0.021808823 & 0.000298464 & 4.426536777 & 0.419989103 \\
\hline 75 & 0.436018957 & 88.49876777 & 0.005778968 & 0.021518311 & 0.000290512 & 4.367571505 & 0.414500647 \\
\hline 76 & 0.430389222 & 87.3561003 & 0.005629736 & 0.021235436 & 0.000282874 & 4.310156518 & 0.409153785 \\
\hline 77 & 0.424903011 & 86.2425642 & 0.00548621 & 0.020959903 & 0.000275534 & 4.25423147 & 0.403943108 \\
\hline 78 & 0.419554907 & 85.15705947 & 0.005348104 & 0.020691428 & 0.000268475 & 4.199739108 & 0.398863479 \\
\hline 79 & 0.414339759 & 84.0985408 & 0.005215148 & 0.020429744 & 0.000261684 & 4.146625074 & 0.393910015 \\
\hline 80 & 0.409252669 & 83.06601423 & 0.00508709 & 0.020174596 & 0.000255148 & 4.094837726 & 0.389078073 \\
\hline 81 & 0.404288979 & 82.05853401 & 0.00496369 & 0.019925743 & 0.000248853 & 4.04432797 & 0.384363236 \\
\hline 82 & 0.399444251 & 81.07519972 & 0.004844727 & 0.019682954 & 0.000242789 & 3.995049106 & 0.379761298 \\
\hline 83 & 0.394714261 & 80.1151536 & 0.00472999 & 0.01944601 & 0.000236944 & 3.946956679 & 0.375268251 \\
\hline 84 & 0.39009498 & 79.17757802 & 0.004619282 & 0.019214703 & 0.000231307 & 3.900008354 & 0.370880276 \\
\hline 85 & 0.385582565 & 78.26169321 & 0.004512415 & 0.018988835 & 0.000225869 & 3.854163784 & 0.36659373 \\
\hline 86 & 0.381173351 & 77.36675505 & 0.004409214 & 0.018768214 & 0.00022062 & 3.809384496 & 0.362405137 \\
\hline 87 & 0.376863837 & 76.49205309 & 0.004309514 & 0.018552662 & 0.000215553 & 3.765633787 & 0.358311176 \\
\hline 88 & 0.37265068 & 75.63690862 & 0.004213157 & 0.018342004 & 0.000210658 & 3.722876619 & 0.354308676 \\
\hline 89 & 0.368530684 & 74.80067297 & 0.004119996 & 0.018136077 & 0.000205927 & 3.681079528 & 0.350394607 \\
\hline 90 & 0.364500792 & 73.98272583 & 0.004029892 & 0.017934722 & 0.000201355 & 3.640210538 & 0.34656607 \\
\hline 91 & 0.360558081 & 73.18247374 & 0.003942711 & 0.017737789 & 0.000196933 & 3.600239075 & 0.342820292 \\
\hline 92 & 0.356699752 & 72.39934864 & 0.003858329 & 0.017545134 & 0.000192655 & 3.561135893 & 0.339154618 \\
\hline 93 & 0.352923124 & 71.63280651 & 0.003776628 & 0.017356619 & 0.000188515 & 3.522873006 & 0.335566505 \\
\hline 94 & 0.34922563 & 70.88232615 & 0.003697494 & 0.017172112 & 0.000184507 & 3.485423614 & 0.332053518 \\
\hline 95 & 0.345604808 & 70.14740796 & 0.003620822 & 0.016991487 & 0.000180626 & 3.448762049 & 0.328613322 \\
\hline 96 & 0.342058299 & 69.42757287 & 0.00354651 & 0.016814621 & 0.000176865 & 3.412863708 & 0.325243677 \\
\hline 97 & 0.338583836 & 68.72236125 & 0.003474462 & 0.0166414 & 0.000173221 & 3.377705003 & 0.321942436 \\
\hline 98 & 0.335179248 & 68.03133197 & 0.003404588 & 0.016471712 & 0.000169689 & 3.343263309 & 0.318707536 \\
\hline 99 & 0.331842447 & 67.35406146 & 0.003336801 & 0.016305449 & 0.000166263 & 3.309516913 & 0.315536998 \\
\hline 100 & 0.328571429 & 66.69014286 & 0.003271018 & 0.016142509 & 0.00016294 & 3.276444972 & 0.31242892 \\
\hline 101 & 0.325364267 & 66.03918517 & 0.003207162 & 0.015982793 & 0.000159716 & 3.244027465 & 0.309381474 \\
\hline 102 & 0.322219109 & 65.40081255 & 0.003145158 & 0.015826207 & 0.000156586 & 3.212245159 & 0.306392902 \\
\hline 103 & 0.319134175 & 64.77466352 & 0.003084934 & 0.015672659 & 0.000153548 & 3.181079564 & 0.303461516 \\
\hline 104 & 0.316107752 & 64.16039032 & 0.003026424 & 0.015522062 & 0.000150597 & 3.150512903 & 0.30058569 \\
\hline 105 & 0.313138189 & 63.55765827 & 0.002969562 & 0.015374332 & 0.00014773 & 3.120528075 & 0.297763858 \\
\hline 106 & 0.310223901 & 62.96614513 & 0.002914289 & 0.015229387 & 0.000144945 & 3.091108624 & 0.294994514 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 107 & 0.307363357 & 62.38554056 & 0.002860544 & 0.015087149 & 0.000142237 & 3.062238708 & 0.292276208 \\
\hline 108 & 0.304555085 & 61.81554555 & 0.002808272 & 0.014947544 & 0.000139605 & 3.033903073 & 0.28960754 \\
\hline 109 & 0.301797664 & 61.25587193 & 0.00275742 & 0.014810499 & 0.000137045 & 3.006087023 & 0.286987165 \\
\hline 110 & 0.299089727 & 60.70624187 & 0.002707937 & 0.014675944 & 0.000134555 & 2.978776397 & 0.284413783 \\
\hline 111 & 0.296429952 & 60.16638742 & 0.002659775 & 0.014543812 & 0.000132132 & 2.951957543 & 0.28188614 \\
\hline 112 & 0.293817067 & 59.63605008 & 0.002612885 & 0.014414038 & 0.000129774 & 2.925617297 & 0.279403029 \\
\hline 113 & 0.291249842 & 59.11498037 & 0.002567225 & 0.014286559 & 0.000127479 & 2.89974296 & 0.276963282 \\
\hline 114 & 0.28872709 & 58.60293748 & 0.002522752 & 0.014161316 & 0.000125244 & 2.87432228 & 0.274565774 \\
\hline 115 & 0.286247666 & 58.09968886 & 0.002479424 & 0.014038249 & 0.000123067 & 2.849343428 & 0.272209417 \\
\hline 116 & 0.283810464 & 57.60500987 & 0.002437202 & 0.013917303 & 0.000120946 & 2.824794986 & 0.269893161 \\
\hline 117 & 0.281414413 & 57.11868347 & 0.002396051 & 0.013798423 & 0.00011888 & 2.800665924 & 0.26761599 \\
\hline 118 & 0.279058481 & 56.64049988 & 0.002355932 & 0.013681557 & 0.000116866 & 2.776945585 & 0.265376924 \\
\hline 119 & 0.276741668 & 56.17025629 & 0.002316813 & 0.013566654 & 0.000114903 & 2.753623673 & 0.263175014 \\
\hline 120 & 0.274463007 & 55.70775656 & 0.002278661 & 0.013453664 & 0.000112989 & 2.730690231 & 0.261009343 \\
\hline 121 & 0.272221565 & 55.25281098 & 0.002241442 & 0.013342541 & 0.000111123 & 2.708135635 & 0.258879023 \\
\hline 122 & 0.270016436 & 54.80523597 & 0.002205129 & 0.013233239 & 0.000109302 & 2.685950574 & 0.256783197 \\
\hline 123 & 0.267846745 & 54.36485385 & 0.002169691 & 0.013125713 & 0.000107526 & 2.664126039 & 0.254721032 \\
\hline 124 & 0.265711645 & 53.93149261 & 0.0021351 & 0.013019921 & 0.000105793 & 2.642653314 & 0.252691724 \\
\hline 125 & 0.263610315 & 53.50498567 & 0.00210133 & 0.01291582 & 0.000104101 & 2.62152396 & 0.250694495 \\
\hline 126 & 0.26154196 & 53.08517171 & 0.002068355 & 0.01281337 & 0.000102449 & 2.600729805 & 0.24872859 \\
\hline 127 & 0.259505811 & 52.67189439 & 0.00203615 & 0.012712534 & 0.000100837 & 2.580262936 & 0.246793277 \\
\hline 128 & 0.25750112 & 52.26500224 & 0.002004691 & 0.012613271 & 9.93E-05 & 2.560115687 & 0.244887848 \\
\hline 129 & 0.255527164 & 51.86434841 & 0.001973956 & 0.012515547 & \(9.77 \mathrm{E}-05\) & 2.540280628 & 0.243011616 \\
\hline 130 & 0.253583241 & 51.46979052 & 0.001943922 & 0.012419326 & \(9.62 \mathrm{E}-05\) & 2.520750559 & 0.241163916 \\
\hline 131 & 0.251668673 & 51.0811905 & 0.001914569 & 0.012324573 & \(9.48 \mathrm{E}-05\) & 2.5015185 & 0.2393441 \\
\hline 132 & 0.249782798 & 50.69841442 & 0.001885875 & 0.012231254 & \(9.33 \mathrm{E}-05\) & 2.48257768 & 0.237551543 \\
\hline 133 & 0.247924976 & 50.32133233 & 0.001857822 & 0.012139338 & 9.19E-05 & 2.463921534 & 0.235785637 \\
\hline 134 & 0.246094586 & 49.9498181 & 0.00183039 & 0.012048794 & \(9.05 \mathrm{E}-05\) & 2.445543692 & 0.234045792 \\
\hline 135 & 0.244291025 & 49.58374934 & 0.001803561 & 0.01195959 & \(8.92 \mathrm{E}-05\) & 2.427437974 & 0.232331435 \\
\hline 136 & 0.242513707 & 49.22300717 & 0.001777318 & 0.011871697 & 8.79E-05 & 2.409598378 & 0.23064201 \\
\hline 137 & 0.240762064 & 48.86747619 & 0.001751643 & 0.011785087 & 8.66E-05 & 2.392019081 & 0.228976977 \\
\hline 138 & 0.239035544 & 48.51704427 & 0.001726521 & 0.011699731 & \(8.54 \mathrm{E}-05\) & 2.374694426 & 0.227335812 \\
\hline 139 & 0.237333609 & 48.17160252 & 0.001701935 & 0.011615603 & \(8.41 \mathrm{E}-05\) & 2.357618922 & 0.225718006 \\
\hline 140 & 0.235655738 & 47.83104508 & 0.001677871 & 0.011532676 & 8.29E-05 & 2.34078723 & 0.224123062 \\
\hline 141 & 0.234001424 & 47.4952691 & 0.001654313 & 0.011450925 & 8.18E-05 & 2.324194168 & 0.2225505 \\
\hline 142 & 0.232370176 & 47.16417458 & 0.001631249 & 0.011370324 & 8.06E-05 & 2.307834695 & 0.220999852 \\
\hline 143 & 0.230761513 & 46.83766429 & 0.001608663 & 0.01129085 & 7.95E-05 & 2.291703913 & 0.219470663 \\
\hline 144 & 0.22917497 & 46.51564368 & 0.001586543 & 0.01121248 & \(7.84 \mathrm{E}-05\) & 2.275797061 & 0.21796249 \\
\hline 145 & 0.227610094 & 46.19802078 & 0.001564876 & 0.01113519 & \(7.73 \mathrm{E}-05\) & 2.260109508 & 0.216474904 \\
\hline 146 & 0.226066444 & 45.88470611 & 0.00154365 & 0.011058958 & \(7.62 \mathrm{E}-05\) & 2.244636749 & 0.215007486 \\
\hline 147 & 0.224543591 & 45.57561261 & 0.001522853 & 0.010983763 & \(7.52 \mathrm{E}-05\) & 2.229374403 & 0.213559828 \\
\hline 148 & 0.223041117 & 45.27065555 & 0.001502474 & 0.010909584 & \(7.42 \mathrm{E}-05\) & 2.214318207 & 0.212131533 \\
\hline 149 & 0.221558617 & 44.96975243 & 0.0014825 & 0.0108364 & \(7.32 \mathrm{E}-05\) & 2.199464013 & 0.210722217 \\
\hline 150 & 0.220095694 & 44.67282297 & 0.001462923 & 0.010764191 & \(7.22 \mathrm{E}-05\) & 2.184807782 & 0.209331503 \\
\hline 151 & 0.218651963 & 44.37978895 & 0.001443731 & 0.010692938 & \(7.13 \mathrm{E}-05\) & 2.170345583 & 0.207959025 \\
\hline 152 & 0.217227049 & 44.09057423 & 0.001424914 & 0.010622622 & 7.03E-05 & 2.156073589 & 0.206604427 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 153 & 0.215820587 & 43.80510463 & 0.001406462 & 0.010553225 & 6.94E-05 & 2.14198807 & 0.205267362 \\
\hline 154 & 0.214432221 & 43.52330785 & 0.001388367 & 0.010484729 & \(6.85 \mathrm{E}-05\) & 2.128085397 & 0.203947492 \\
\hline 155 & 0.213061603 & 43.24511348 & 0.001370618 & 0.010417116 & 6.76E-05 & 2.114362033 & 0.202644487 \\
\hline 156 & 0.211708395 & 42.97045287 & 0.001353208 & 0.01035037 & 6.67E-05 & 2.100814529 & 0.201358025 \\
\hline 157 & 0.210372267 & 42.69925912 & 0.001336127 & 0.010284473 & 6.59E-05 & 2.087439528 & 0.200087794 \\
\hline 158 & 0.209052899 & 42.43146701 & 0.001319368 & 0.010219411 & 6.51E-05 & 2.074233756 & 0.198833489 \\
\hline 159 & 0.207749977 & 42.16701292 & 0.001302922 & 0.010155166 & \(6.42 \mathrm{E}-05\) & 2.06119402 & 0.197594812 \\
\hline 160 & 0.206463196 & 41.90583483 & 0.001286782 & 0.010091724 & \(6.34 \mathrm{E}-05\) & 2.04831721 & 0.196371472 \\
\hline 161 & 0.205192256 & 41.64787225 & 0.001270939 & 0.01002907 & 6.27E-05 & 2.035600291 & 0.195163186 \\
\hline 162 & 0.203936868 & 41.39306615 & 0.001255388 & 0.009967189 & 6.19E-05 & 2.023040302 & 0.193969679 \\
\hline 163 & 0.202696748 & 41.14135895 & 0.00124012 & 0.009906067 & 6.11E-05 & 2.010634357 & 0.192790681 \\
\hline 164 & 0.201471619 & 40.89269446 & 0.001225129 & 0.00984569 & 6.04E-05 & 1.99837964 & 0.191625929 \\
\hline 165 & 0.20026121 & 40.64701785 & 0.001210409 & 0.009786044 & 5.96E-05 & 1.986273401 & 0.190475166 \\
\hline 166 & 0.199065259 & 40.40427558 & 0.001195951 & 0.009727117 & 5.89E-05 & 1.974312959 & 0.189338142 \\
\hline 167 & 0.197883507 & 40.16441538 & 0.001181752 & 0.009668895 & 5.82E-05 & 1.962495696 & 0.188214611 \\
\hline 168 & 0.196715703 & 39.92738625 & 0.001167804 & 0.009611366 & 5.75E-05 & 1.950819056 & 0.187104337 \\
\hline 169 & 0.195561602 & 39.69313834 & 0.001154101 & 0.009554518 & 5.68E-05 & 1.939280543 & 0.186007084 \\
\hline 170 & 0.194420964 & 39.46162299 & 0.001140638 & 0.009498338 & 5.62E-05 & 1.927877721 & 0.184922625 \\
\hline 171 & 0.193293554 & 39.23279267 & 0.00112741 & 0.009442815 & 5.55E-05 & 1.916608211 & 0.183850739 \\
\hline 172 & 0.192179144 & 39.00660094 & 0.00111441 & 0.009387938 & 5.49E-05 & 1.905469688 & 0.182791207 \\
\hline 173 & 0.191077511 & 38.78300241 & 0.001101633 & 0.009333694 & 5.42E-05 & 1.894459883 & 0.181743817 \\
\hline 174 & 0.189988435 & 38.56195275 & 0.001089076 & 0.009280074 & 5.36E-05 & 1.883576575 & 0.180708362 \\
\hline 175 & 0.188911704 & 38.34340862 & 0.001076731 & 0.009227066 & 5.30E-05 & 1.872817598 & 0.179684638 \\
\hline 176 & 0.187847109 & 38.12732767 & 0.001064596 & 0.00917466 & 5.24E-05 & 1.862180834 & 0.178672448 \\
\hline 177 & 0.186794445 & 37.91366848 & 0.001052664 & 0.009122847 & 5.18E-05 & 1.851664211 & 0.177671598 \\
\hline 178 & 0.185753513 & 37.70239057 & 0.001040932 & 0.009071615 & 5.12E-05 & 1.841265706 & 0.176681898 \\
\hline 179 & 0.184724119 & 37.49345434 & 0.001029395 & 0.009020956 & 5.07E-05 & 1.83098334 & 0.175703163 \\
\hline 180 & 0.18370607 & 37.28682109 & 0.001018048 & 0.008970859 & 5.01E-05 & 1.820815178 & 0.174735212 \\
\hline 181 & 0.182699182 & 37.08245294 & 0.001006888 & 0.008921315 & 4.95E-05 & 1.810759328 & 0.173777867 \\
\hline 182 & 0.181703271 & 36.88031285 & 0.000995911 & 0.008872316 & 4.90E-05 & 1.800813939 & 0.172830955 \\
\hline
\end{tabular}

Sampling station id: S40; Input Viin: 189.73; A: 23.6; Beta: 0.08; DeltaA: 0.001
\begin{tabular}{|r|l|r|r|r|r|r|r|}
\hline \(\boldsymbol{t}\) & \multicolumn{1}{l|}{ Afb } & \multicolumn{1}{l|}{ Output(Vo) } & \multicolumn{1}{l|}{ DeltaA } & \multicolumn{1}{l|}{ AfbGoldR } & \multicolumn{1}{l|}{ DeltaAfbGoldR } & \multicolumn{1}{l|}{ OutputGoldR } & \multicolumn{1}{l|}{ DeltaAfbAfbG } \\
\hline \hline 0 & 0 & 4477.628 & 23.6 & 0 & 23.6 & 4477.628 & 0 \\
1 & 8.171745152 & 1550.425208 & 15.42825485 & 1.511897498 & 22.0881025 & 286.8523124 & 6.659847654 \\
2 & 4.941373534 & 937.5268007 & 3.230371618 & 0.780964387 & 0.730933111 & 148.1723731 & 4.160409147 \\
3 & 3.541416567 & 671.9129652 & 1.399956968 & 0.526449968 & 0.254514419 & 99.88335245 & 3.014966598 \\
4 & 2.7595884 & 523.5767072 & 0.781828166 & 0.397051755 & 0.129398214 & 75.33262939 & 2.362536646 \\
5 & 2.260536398 & 428.8915709 & 0.499052002 & 0.318713826 & 0.078337928 & 60.46957428 & 1.941822572 \\
6 & 1.914341337 & 363.2079818 & 0.346195062 & 0.266194006 & 0.052519821 & 50.50498872 & 1.648147331 \\
7 & 1.660101294 & 314.9710186 & 0.254240042 & 0.228534538 & 0.037659467 & 43.35985797 & 1.431566756 \\
8 & 1.465474416 & 278.044461 & 0.194626878 & 0.200210067 & 0.028324471 & 37.98585602 & 1.265264349 \\
9 & 1.311694086 & 248.867719 & 0.15378033 & 0.178132413 & 0.022077654 & 33.79706276 & 1.133561673 \\
10 & 1.187122736 & 225.2327968 & 0.12457135 & 0.160440272 & 0.017692141 & 30.44033279 & 1.026682464 \\
11 & 1.084160235 & 205.6977214 & 0.102962501 & 0.145944991 & 0.014495281 & 27.69014312 & 0.938215244 \\
12 & 0.997632736 & 189.280859 & 0.086527499 & 0.133851888 & 0.012093103 & 25.39571868 & 0.863780848
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 13 & 0.923896023 & 175.2907924 & 0.073736713 & 0.123609518 & 0.01024237 & 23.45243378 & 0.800286505 \\
\hline 14 & 0.860309128 & 163.2264509 & 0.063586895 & 0.114823224 & 0.008786294 & 785410 & 85904 \\
\hline 15 & 0.804911323 & 152.7158254 & 0.055397805 & 07203115 & 0.007620109 & 33964698 & . 697708208 \\
\hline 16 & 0.756216355 & 143.476929 & 0.048694969 & 0.100531462 & 0.006671653 & 19.07383423 & 0.655684893 \\
\hline 17 & 0.713077109 & 135.2921199 & 0.043139246 & 0.094641561 & 0.0058899 & 17.95634343 & 0.618435548 \\
\hline 18 & 0.6745941 & 127.99073 & 0.03848300 & 0.089403615 & 0.005237946 & 16.96254789 & 0.585190485 \\
\hline 19 & 0.640052072 & 121.43 & 0.034542028 & 5052 & 0.0468856 & 9869 & 3702 \\
\hline 20 & 0.60887512 & 115.52 & 0.031176943 & 0.080493747 & 042213 & 15.27207861 & 0.528381382 \\
\hline 21 & 0.58059437 & 110.15617 & 0.028280758 & 0.076673164 & 0.00382058 & .547199 & . 503921207 \\
\hline 22 & 0.554824149 & 105.2667858 & 0.025770222 & 0.07319883 & 0.00347433 & 8880140 & 0.481625319 \\
\hline 23 & 0.531244372 & 100.7929948 & 0.023579777 & 0.070025716 & 0.003173115 & 13.28597903 & 0.461218657 \\
\hline 24 & 0.509587148 & 96.68396 & 0.02165722 & 0.067116275 & 0.0029094 & 12.7339709 & 0.442470873 \\
\hline 25 & 0.489626556 & 92.896846 & 0.019960592 & 664438955 & 026773 & 00 & 7601 \\
\hline 26 & 0.47117073 & 89.39522 & 0.01845581 & 0.0619670 & . 024719 & 1.757006 & 203699 \\
\hline 27 & 0.454055718 & 86.14799138 & 0.0171150 & 0.059677769 & 0.002289272 & 11.322663 & 0.394377949 \\
\hline 28 & 0.438140502 & 83.128397 & 0.0159152 & 0.057551618 & 26151 & 919268 & 88884 \\
\hline 29 & 0.4233032 & 80.3133161 & 0.014837302 & 0.055571752 & 0.00197986 & 10.5436285 & 0.367731448 \\
\hline 30 & 0.4094378 & 77.682650 & 0.0138653 & 0.053723577 & 0.001848175 & 10.1929743 & 0.355714313 \\
\hline 31 & 0.39645209 & 75.21885499 & 0.01298580 & 0.051994377 & 0. 001729201 & 9.864893095 & 713 \\
\hline 32 & 0.384264687 & 72.906539 & 0.012187403 & 5037 & 0.016213 & 9.557273189 & 91666 \\
\hline 33 & 0.372804246 & 70.732149 & 0.0114604 & 0.048849725 & 0.0015232 & 682583 & 54521 \\
\hline 34 & 0.362007608 & 68.68370352 & 0.010796638 & 0.047415855 & 0.0014338 & 8.99621017 & 0.314591753 \\
\hline 35 & 0.351818724 & 66.75056649 & 0.01018888 & 0.046063761 & 0.001352094 & 8.739677293 & 0.305754963 \\
\hline 36 & 0.342187681 & 64.92326876 & 0.009631043 & . 04478664 & 0.00127712 & 8.49736919 & 297401041 \\
\hline 37 & 0.33306988 & 19334989 & . 0911 & 0.04357842 & 0.0012082 & 26813 & . 289491463 \\
\hline 38 & 0.324425382 & 61.553227 & 0.0086445 & 0.04243368 & 0.0114473 & . 05094337 & 0281991696 \\
\hline 39 & 0.316218244 & 59.99608747 & 0.008207138 & 0.04134755 & 0.001086137 & 7.84487060 & 0.274870695 \\
\hline 40 & 0.308416 & 58.51578672 & 0.0078021 & 0.040315627 & 0.001031923 & 7.6490838 & 0.268100474 \\
\hline 41 & 0.300989695 & 57.10677482 & 0.00742640 & 0.039333958 & . 00009816 & .462831 & 0.261655737 \\
\hline 42 & 0.293912524 & 55.76402311 & . 00707717 & 38398959 & 0.000934999 & 7.285434429 & 255513565 \\
\hline 43 & 0.287160518 & 54.48296505 & 0.006752006 & 0.037507379 & 0.00089158 & 16274994 & 0.249653139 \\
\hline 44 & 0.280711771 & 53.259444 & 0.006448747 & 0.036656262 & 00851116 & 54792681 & 244055508 \\
\hline 45 & 0.27454630 & 52.0896 & 0.006165 & 0.035842916 & 0.008133 & 6.800476459 & . 238703385 \\
\hline 46 & 0.268645843 & 50.9701757 & 0.005900458 & 0350648 & 0.000778036 & 6.6528596 & 0.233580963 \\
\hline 47 & 0.26299367 & 49.8977890 & 0.005652172 & 0.034319904 & 0.000744976 & 5115153 & . 228673767 \\
\hline 48 & 0.257574435 & 48.86959749 & 0.005419236 & 0.033605924 & 0.00071398 & 6.376051914 & 0.223968511 \\
\hline 49 & 0.252374027 & 47.88292412 & 0.005200408 & 0.032921045 & 0.000684878 & 6.246109923 & 0.219452982 \\
\hline 50 & 0.247379455 & 46.93530398 & 0.004994572 & 0.032263525 & 0.000657521 & 6.12135850 & 0.21511593 \\
\hline 51 & 0.242578735 & 46.024463 & 0.00480072 & 0.031631754 & 0.00063177 & 6.001492743 & 0.210946981 \\
\hline 52 & 0.23796079 & 45.148302 & 0.0046179 & , 310242 & 0.000607503 & 5.8862311 & 0.206936546 \\
\hline 53 & 0.233515396 & 44.304876 & 0.00444540 & 0.030439643 & 0.000584608 & 5.775313425 & 203075753 \\
\hline 54 & 0.229233041 & 43.4923848 & 0.004282356 & 0.029876659 & 0.000562983 & 5.668498571 & 0.199356381 \\
\hline 55 & 0.225104922 & 42.70915681 & 0.004128119 & 0.029334123 & 0.000542537 & 5.56556306 & 0.195770799 \\
\hline 56 & 0.221122854 & 41.95363916 & 0.003982067 & 0.028810938 & 0.000523184 & 5.46629934 & 0.192311916 \\
\hline 57 & 0.217279222 & 41.22438683 & 0.003843632 & . 283060 & . 0005048 & 5.370514376 & 0.188973133 \\
\hline 58 & 0.21356693 & 40.52005357 & 0.003712293 & 0.027818629 & 0.0004874 & 7802 & 0.185748301 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 59 & 0.209979358 & 39.83938359 & 0.003587572 & 0.027347673 & 0.000470956 & 5.188674002 & 0.182631685 \\
\hline 60 & 0.206510326 & 39.18120406 & 0.003469032 & 0.026892398 & 0.000455275 & 5.102294644 & 0.179617928 \\
\hline 61 & 0.203154053 & 38.54441843 & 0.003356273 & 0.026452033 & 0.000440365 & 5.018744222 & 0.17670202 \\
\hline 62 & 0.19990513 & 37.92800027 & 0.003248923 & 0.026025858 & 0.000426175 & 4.937886003 & 0.173879272 \\
\hline 63 & 0.196758487 & 37.33098779 & 0.003146642 & 0.025613197 & 0.000412661 & 4.859591925 & 0.17114529 \\
\hline 64 & 0.19370937 & 36.75247882 & 0.003049117 & 0.025213419 & 0.000399779 & 4.783741924 & 0.168495952 \\
\hline 65 & 0.190753314 & 36.19162625 & 0.002956056 & 0.024825928 & 0.000387491 & 4.710223313 & 0.165927386 \\
\hline 66 & 0.187886122 & 35.64763391 & 0.002867192 & 0.024450167 & 0.000375761 & 4.638930231 & 0.163435955 \\
\hline 67 & 0.185103846 & 35.11975278 & 0.002782276 & 0.024085612 & 0.000364555 & 4.569763129 & 0.161018235 \\
\hline 68 & 0.18240277 & 34.60727756 & 0.002701076 & 0.023731768 & 0.000353844 & 4.502628308 & 0.158671002 \\
\hline 69 & 0.179779389 & 34.10954354 & 0.002623381 & 0.02338817 & 0.000343598 & 4.437437495 & 0.156391219 \\
\hline 70 & 0.1772304 & 33.6259237 & 0.00254899 & 0.02305438 & 0.00033379 & 4.374107457 & 0.15417602 \\
\hline 71 & 0.174752681 & 33.15582608 & 0.002477719 & 0.022729983 & 0.000324397 & 4.312559646 & 0.152022698 \\
\hline 72 & 0.172343284 & 32.69869136 & 0.002409396 & 0.022414588 & 0.000315394 & 4.252719872 & 0.149928696 \\
\hline 73 & 0.169999424 & 32.25399066 & 0.002343861 & 0.022107827 & 0.000306762 & 4.194518008 & 0.147891597 \\
\hline 74 & 0.16771846 & 31.82122349 & 0.002280963 & 0.021809349 & 0.000298478 & 4.137887714 & 0.145909112 \\
\hline 75 & 0.165497896 & 31.39991585 & 0.002220564 & 0.021518822 & 0.000290526 & 4.082766185 & 0.143979074 \\
\hline 76 & 0.163335363 & 30.98961852 & 0.002162533 & 0.021235935 & 0.000282888 & 4.029093916 & 0.142099429 \\
\hline 77 & 0.161228617 & 30.58990545 & 0.002106747 & 0.020960388 & 0.000275546 & 3.976814495 & 0.140268228 \\
\hline 78 & 0.159175525 & 30.20037231 & 0.002053092 & 0.020691901 & 0.000268487 & 3.925874396 & 0.138483624 \\
\hline 79 & 0.157174064 & 29.82063509 & 0.002001461 & 0.020430205 & 0.000261696 & 3.876222803 & 0.136743859 \\
\hline 80 & 0.15522231 & 29.45032886 & 0.001951754 & 0.020175046 & 0.000255159 & 3.827811439 & 0.135047264 \\
\hline 81 & 0.153318435 & 29.0891066 & 0.001903875 & 0.019926181 & 0.000248864 & 3.780594408 & 0.133392253 \\
\hline 82 & 0.151460697 & 28.73663809 & 0.001857737 & 0.019683382 & 0.0002428 & 3.734528052 & 0.131777315 \\
\hline 83 & 0.149647441 & 28.39260894 & 0.001813256 & 0.019446428 & 0.000236954 & 3.689570813 & 0.130201013 \\
\hline 84 & 0.147877087 & 28.05671964 & 0.001770354 & 0.019215112 & 0.000231317 & 3.645683113 & 0.128661975 \\
\hline 85 & 0.14614813 & 27.72868467 & 0.001728957 & 0.018989233 & 0.000225878 & 3.602827235 & 0.127158896 \\
\hline 86 & 0.144459135 & 27.40823172 & 0.001688995 & 0.018768604 & 0.000220629 & 3.560967212 & 0.125690531 \\
\hline 87 & 0.142808733 & 27.09510093 & 0.001650402 & 0.018553042 & 0.000215561 & 3.520068732 & 0.124255691 \\
\hline 88 & 0.141195616 & 26.78904418 & 0.001613117 & 0.018342376 & 0.000210666 & 3.48009904 & 0.12285324 \\
\hline 89 & 0.139618534 & 26.48982441 & 0.001577082 & 0.01813644 & 0.000205936 & 3.441026853 & 0.121482093 \\
\hline 90 & 0.138076293 & 26.19721507 & 0.001542241 & 0.017935078 & 0.000201363 & 3.402822278 & 0.120141215 \\
\hline 91 & 0.136567751 & 25.91099949 & 0.001508542 & 0.017738137 & 0.000196941 & 3.365456732 & 0.118829614 \\
\hline 92 & 0.135091817 & 25.63097037 & 0.001475935 & 0.017545474 & 0.000192662 & 3.328902877 & 0.117546342 \\
\hline 93 & 0.133647443 & 25.35692928 & 0.001444374 & 0.017356952 & 0.000188522 & 3.293134548 & 0.11629049 \\
\hline 94 & 0.132233628 & 25.08868618 & 0.001413815 & 0.017172438 & 0.000184514 & 3.258126694 & 0.11506119 \\
\hline 95 & 0.130849412 & 24.82605899 & 0.001384215 & 0.016991806 & 0.000180632 & 3.223855316 & 0.113857606 \\
\hline 96 & 0.129493876 & 24.56887318 & 0.001355536 & 0.016814934 & 0.000176872 & 3.190297417 & 0.112678943 \\
\hline 97 & 0.128166138 & 24.31696138 & 0.001327738 & 0.016641706 & 0.000173228 & 3.157430945 & 0.111524432 \\
\hline 98 & 0.126865351 & 24.07016299 & 0.001300787 & 0.016472012 & 0.000169695 & 3.125234749 & 0.110393339 \\
\hline 99 & 0.125590702 & 23.8283239 & 0.001274649 & 0.016305743 & 0.000166269 & 3.093688533 & 0.109284959 \\
\hline 100 & 0.124341412 & 23.5912961 & 0.00124929 & 0.016142797 & 0.000162946 & 3.062772809 & 0.108198615 \\
\hline 101 & 0.123116731 & 23.35893744 & 0.001224681 & 0.015983075 & 0.000159721 & 3.032468863 & 0.107133656 \\
\hline 102 & 0.12191594 & 23.13111129 & 0.001200791 & 0.015826483 & 0.000156592 & 3.002758713 & 0.106089456 \\
\hline 103 & 0.120738346 & 22.90768633 & 0.001177594 & 0.01567293 & 0.000153553 & 2.973625077 & 0.105065415 \\
\hline 104 & 0.119583283 & 22.68853622 & 0.001155063 & 0.015522328 & 0.000150602 & 2.945051334 & 0.104060954 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|r|r|r|}
105 & 0.11845011 & 22.47353945 & 0.001133172 & 0.015374593 & 0.000147735 & 2.917021498 & 0.103075518 \\
106 & 0.117338212 & 22.26257905 & 0.001111898 & 0.015229643 & 0.00014495 & 2.889520186 & 0.102108569 \\
107 & 0.116246995 & 22.05554242 & 0.001091217 & 0.015087401 & 0.000142242 & 2.862532589 & 0.101159594 \\
108 & 0.115175887 & 21.85232109 & 0.001071108 & 0.014947791 & 0.00013961 & 2.836044445 & 0.100228096 \\
109 & 0.114124337 & 21.65281055 & 0.00105155 & 0.014810742 & 0.00013705 & 2.810042018 & 0.099313596 \\
110 & 0.113091815 & 21.4569101 & 0.001032522 & 0.014676182 & 0.000134559 & 2.784512067 & 0.098415633 \\
111 & 0.112077809 & 21.26452262 & 0.001014007 & 0.014544046 & 0.000132136 & 2.759441833 & 0.097533763 \\
112 & 0.111081824 & 21.07555447 & 0.000995985 & 0.014414268 & 0.000129778 & 2.734819007 & 0.096667556 \\
\hline
\end{tabular}

Sampling station id: S19; Input Viin: 146.56; A: 23.2; Beta: 0.002; DeltaA: 0.01
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(t\) & Afb & Output(Vo) & DeltaA & AfbGoldR & DeltaAfbGoldr & OutputGoldr & DeltaAfbAfbG \\
\hline 0 & 0 & 3400.192 & 23.2 & 0 & 23.2 & 3400.192 & 0 \\
\hline 1 & 22.17125382 & 3249.41896 & 1.028746177 & 1.510229386 & 21.68977061 & 221.3392188 & 20.66102444 \\
\hline 2 & 21.22986823 & 3111.449488 & 0.941385594 & 0.780519064 & 0.729710322 & 114.3928741 & 20.44934916 \\
\hline 3 & 20.36516854 & 2984.719101 & 0.864699689 & 0.52624757 & 0.254271495 & 77.12684381 & 19.83892097 \\
\hline 4 & 19.56815115 & 2867.908232 & 0.797017392 & 0.396936614 & 0.129310956 & 58.17503015 & 19.17121453 \\
\hline 5 & 18.83116883 & 2759.896104 & 0.736982316 & 0.318639634 & 0.07829698 & 46.69982472 & 18.5125292 \\
\hline 6 & 18.14768461 & 2659.724656 & 0.683484225 & 0.266142248 & 0.052497385 & 39.00580793 & 17.88154236 \\
\hline 7 & 17.51207729 & 2566.570048 & 0.635607311 & 0.228496389 & 0.03764586 & 33.48843073 & 17.28358091 \\
\hline 8 & 16.91948658 & 2479.719953 & 0.592590714 & 0.200180787 & 0.028315601 & 29.33849618 & 16.71930579 \\
\hline 9 & 16.36568849 & 2398.555305 & 0.553798094 & 0.178109234 & 0.022071553 & 26.10368941 & 16.18757925 \\
\hline 10 & 15.84699454 & 2322.535519 & 0.518693952 & 0.160421469 & 0.017687766 & 23.51137043 & 15.68657307 \\
\hline 11 & 15.36016949 & 2251.186441 & 0.486825044 & 0.145929431 & 0.014492037 & 21.38741748 & 15.21424006 \\
\hline 12 & 14.90236382 & 2184.090442 & 0.457805668 & 0.1338388 & 0.012090631 & 19.61541454 & 14.76852502 \\
\hline 13 & 14.47105788 & 2120.878244 & 0.431305939 & 0.123598356 & 0.010240444 & 18.11457507 & 14.34745953 \\
\hline 14 & 14.06401552 & 2061.222114 & 0.407042365 & 0.114813593 & 0.008784763 & 16.82708017 & 13.94920193 \\
\hline 15 & 13.67924528 & 2004.830189 & 0.384770236 & 0.107194719 & 0.007618873 & 15.71045809 & 13.57205056 \\
\hline 16 & 13.31496786 & 1951.44169 & 0.364277423 & 0.100524079 & 0.006670641 & 14.73280898 & 13.21444378 \\
\hline 17 & 12.96958855 & 1900.822898 & 0.345379309 & 0.094635018 & 0.005889061 & 13.86970825 & 12.87495353 \\
\hline 18 & 12.64167393 & 1852.763731 & 0.327914619 & 0.089397776 & 0.005237242 & 13.10213806 & 12.55227616 \\
\hline 19 & 12.32993197 & 1807.07483 & 0.311741959 & 0.08470981 & 0.004687966 & 12.41506972 & 12.24522216 \\
\hline 20 & 12.03319502 & 1763.585062 & 0.296736952 & 0.080489014 & 0.004220796 & 11.79646985 & 11.95270601 \\
\hline 21 & 11.75040519 & 1722.139384 & 0.282789834 & 0.07666887 & 0.003820144 & 11.23658956 & 11.67373632 \\
\hline 22 & 11.48060174 & 1682.596991 & 0.269803445 & 0.073194916 & 0.003473954 & 10.72744689 & 11.40740683 \\
\hline 23 & 11.22291022 & 1644.829721 & 0.257691525 & 0.070022133 & 0.003172783 & 10.26244388 & 11.15288808 \\
\hline 24 & 10.97653293 & 1608.720666 & 0.246377287 & 0.067112985 & 0.002909149 & 9.836079015 & 10.90941995 \\
\hline 25 & 10.74074074 & 1574.162963 & 0.235792189 & 0.064435921 & 0.002677063 & 9.443728607 & 10.67630482 \\
\hline 26 & 10.51486584 & 1541.058738 & 0.225874896 & 0.061964236 & 0.002471685 & 9.081478391 & 10.45290161 \\
\hline 27 & 10.29829545 & 1509.318182 & 0.21657039 & 0.059675167 & 0.002289069 & 8.745992504 & 10.23862029 \\
\hline 28 & 10.09046625 & 1478.858733 & 0.207829205 & 0.057549198 & 0.002125969 & 8.434410451 & 10.03291705 \\
\hline 29 & 9.890859482 & 1449.604366 & 0.199606768 & 0.055569496 & 0.001979702 & 8.144265347 & 9.835289985 \\
\hline 30 & 9.698996656 & 1421.48495 & 0.191862826 & 0.053721469 & 0.001848027 & 7.873418458 & 9.645275187 \\
\hline 31 & 9.514435696 & 1394.435696 & 0.18456096 & 0.051992402 & 0.001729067 & 7.620006403 & 9.462443294 \\
\hline 32 & 9.336767547 & 1368.396652 & 0.177668149 & 0.050371167 & 0.001621235 & 7.382398213 & 9.28639638 \\
\hline 33 & 9.165613148 & 1343.312263 & 0.171154399 & 0.048847982 & 0.001523185 & 7.1591602 & 9.116765166 \\
\hline 34 & 9.000620732 & 1319.130975 & 0.164992415 & 0.047414213 & 0.001433769 & 6.949026997 & 8.95320652 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 35 & 8.841463415 & 1295.804878 & 0.159157318 & 0.04606221 & 0.001352002 & 6.750877565 & 8.795401204 \\
\hline 36 & 8.687837028 & 1273.289395 & 0.153626386 & 0.044785175 & 0.001277036 & 6.563715184 & 8.643051854 \\
\hline 37 & 8.539458186 & 1251.542992 & 0.148378842 & 0.043577038 & 0.001208137 & 6.386650686 & 8.495881148 \\
\hline 38 & 8.396062536 & 1230.526925 & 0.14339565 & 0.042432371 & 0.001144667 & 6.218888328 & 8.353630165 \\
\hline 39 & 8.257403189 & 1210.205011 & 0.138659347 & 0.041346301 & 0.001086071 & 6.059713835 & 8.216056888 \\
\hline 40 & 8.1232493 & 1190.543417 & 0.134153889 & 0.040314439 & 0.001031861 & 5.908484237 & 8.08293486 \\
\hline 41 & 7.993384785 & 1171.510474 & 0.129864515 & 0.039332827 & 0.000981612 & 5.764619185 & 7.954051958 \\
\hline 42 & 7.867607162 & 1153.076506 & 0.125777623 & 0.038397881 & 0.000934946 & 5.627593512 & 7.829209281 \\
\hline 43 & 7.745726496 & 1135.213675 & 0.121880667 & 0.037506351 & 0.00089153 & 5.496930823 & 7.708220145 \\
\hline 44 & 7.62756444 & 1117.895844 & 0.118162056 & 0.036655281 & 0.00085107 & 5.372197963 & 7.590909159 \\
\hline 45 & 7.512953368 & 1101.098446 & 0.114611072 & 0.035841977 & 0.000813303 & 5.253000221 & 7.47711139 \\
\hline 46 & 7.401735579 & 1084.798367 & 0.111217788 & 0.035063982 & 0.000777996 & 5.138977157 & 7.366671598 \\
\hline 47 & 7.293762575 & 1068.973843 & 0.107973004 & 0.034319043 & 0.000744939 & 5.02979896 & 7.259443532 \\
\hline 48 & 7.188894398 & 1053.604363 & 0.104868178 & 0.033605099 & 0.000713944 & 4.925163266 & 7.155289299 \\
\hline 49 & 7.086999022 & 1038.670577 & 0.101895375 & 0.032920254 & 0.000684845 & 4.824792356 & 7.054078769 \\
\hline 50 & 6.987951807 & 1024.154217 & 0.099047215 & 0.032262764 & 0.000657489 & 4.7284307 & 6.955689043 \\
\hline 51 & 6.891634981 & 1010.038023 & 0.096316826 & 0.031631023 & 0.000631741 & 4.63584278 & 6.860003958 \\
\hline 52 & 6.797937178 & 996.3056728 & 0.093697803 & 0.031023548 & 0.000607475 & 4.546811172 & 6.76691363 \\
\hline 53 & 6.706753006 & 982.9417206 & 0.091184171 & 0.030438966 & 0.000584582 & 4.461134839 & 6.676314041 \\
\hline 54 & 6.617982656 & 969.9315381 & 0.08877035 & 0.029876007 & 0.000562959 & 4.378627617 & 6.588106649 \\
\hline 55 & 6.531531532 & 957.2612613 & 0.086451125 & 0.029333494 & 0.000542513 & 4.299116864 & 6.502198038 \\
\hline 56 & 6.447309916 & 944.9177412 & 0.084221616 & 0.028810332 & 0.000523162 & 4.222442255 & 6.418499584 \\
\hline 57 & 6.36523266 & 932.8884987 & 0.082077255 & 0.028305504 & 0.000504828 & 4.148454701 & 6.336927156 \\
\hline 58 & 6.285218899 & 921.1616818 & 0.080013761 & 0.027818063 & 0.000487441 & 4.077015382 & 6.257400836 \\
\hline 59 & 6.207191781 & 909.7260274 & 0.078027118 & 0.027347127 & 0.000470937 & 4.007994881 & 6.179844654 \\
\hline 60 & 6.131078224 & 898.5708245 & 0.076113557 & 0.02689187 & 0.000455257 & 3.941272396 & 6.104186355 \\
\hline 61 & 6.056808688 & 887.6858814 & 0.074269536 & 0.026451522 & 0.000440348 & 3.87673504 & 6.030357167 \\
\hline 62 & 5.984316962 & 877.061494 & 0.072491726 & 0.026025363 & 0.000426159 & 3.814277198 & 5.958291599 \\
\hline 63 & 5.913539967 & 866.6884176 & 0.070776995 & 0.025612718 & 0.000412645 & 3.753799956 & 5.887927249 \\
\hline 64 & 5.844417574 & 856.5578396 & 0.069122394 & 0.025212954 & 0.000399764 & 3.695210574 & 5.819204619 \\
\hline 65 & 5.77689243 & 846.6613546 & 0.067525143 & 0.024825478 & 0.000387477 & 3.638422013 & 5.752066953 \\
\hline 66 & 5.710909807 & 836.9909413 & 0.065982623 & 0.024449731 & 0.000375747 & 3.583352504 & 5.686460076 \\
\hline 67 & 5.646417445 & 827.5389408 & 0.064492362 & 0.024085188 & 0.000364543 & 3.529925154 & 5.622332257 \\
\hline 68 & 5.583365422 & 818.2980362 & 0.063052024 & 0.023731356 & 0.000353832 & 3.47806759 & 5.559634065 \\
\hline 69 & 5.521706017 & 809.2612338 & 0.061659405 & 0.02338777 & 0.000343586 & 3.427711628 & 5.498318246 \\
\hline 70 & 5.461393597 & 800.4218456 & 0.06031242 & 0.023053991 & 0.000333779 & 3.378792978 & 5.438339606 \\
\hline 71 & 5.402384501 & 791.7734724 & 0.059009096 & 0.022729605 & 0.000324386 & 3.331250968 & 5.379654895 \\
\hline 72 & 5.344636933 & 783.3099889 & 0.057747567 & 0.022414221 & 0.000315384 & 3.285028294 & 5.322222712 \\
\hline 73 & 5.288110868 & 775.0255288 & 0.056526065 & 0.02210747 & 0.000306752 & 3.240070787 & 5.266003398 \\
\hline 74 & 5.232767954 & 766.9144713 & 0.055342914 & 0.021809001 & 0.000298469 & 3.196327207 & 5.210958953 \\
\hline 75 & 5.178571429 & 758.9714286 & 0.054196525 & 0.021518484 & 0.000290517 & 3.153749039 & 5.157052944 \\
\hline 76 & 5.125486037 & 751.1912337 & 0.053085391 & 0.021235605 & 0.000282879 & 3.112290325 & 5.104250432 \\
\hline 77 & 5.073477957 & 743.5689293 & 0.052008081 & 0.020960067 & 0.000275538 & 3.071907487 & 5.052517889 \\
\hline 78 & 5.022514721 & 736.0997575 & 0.050963235 & 0.020691588 & 0.000268479 & 3.032559183 & 5.001823133 \\
\hline 79 & 4.972565158 & 728.7791495 & 0.049949563 & 0.0204299 & 0.000261688 & 2.994206161 & 4.952135258 \\
\hline 80 & 4.923599321 & 721.6027165 & 0.048965837 & 0.020174748 & 0.000255152 & 2.956811131 & 4.903424572 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 81 & 4.875588433 & 714.5662408 & 0.048010888 & 0.019925891 & 0.000248857 & 2.920338642 & 4.855662542 \\
\hline 82 & 4.828504829 & 707.6656677 & 0.047083605 & 0.019683099 & 0.000242793 & 2.884754971 & 4.80882173 \\
\hline 83 & 4.7823219 & 700.8970976 & 0.046182929 & 0.019446152 & 0.000236947 & 2.85002802 & 4.762875748 \\
\hline 84 & 4.737014048 & 694.2567788 & 0.045307852 & 0.019214842 & 0.00023131 & 2.816127216 & 4.717799206 \\
\hline 85 & 4.692556634 & 687.7411003 & 0.044457413 & 0.01898897 & 0.000225872 & 2.783023424 & 4.673567664 \\
\hline 86 & 4.648925938 & 681.3465854 & 0.043630697 & 0.018768347 & 0.000220623 & 2.750688866 & 4.630157591 \\
\hline 87 & 4.606099111 & 675.0698856 & 0.042826827 & 0.018552791 & 0.000215556 & 2.719097037 & 4.58754632 \\
\hline 88 & 4.564054139 & 668.9077746 & 0.042044971 & 0.01834213 & 0.00021066 & 2.688222636 & 4.545712009 \\
\hline 89 & 4.522769807 & 662.8571429 & 0.041284333 & 0.0181362 & 0.00020593 & 2.658041499 & 4.504633606 \\
\hline 90 & 4.482225657 & 656.9149923 & 0.04054415 & 0.017934843 & 0.000201358 & 2.628530536 & 4.464290814 \\
\hline 91 & 4.442401961 & 651.0784314 & 0.039823696 & 0.017737907 & 0.000196935 & 2.599667669 & 4.424664054 \\
\hline 92 & 4.403279684 & 645.3446705 & 0.039122277 & 0.01754525 & 0.000192658 & 2.571431782 & 4.385734435 \\
\hline 93 & 4.364840458 & 639.7110175 & 0.038439227 & 0.017356732 & 0.000188517 & 2.543802663 & 4.347483725 \\
\hline 94 & 4.327066547 & 634.1748732 & 0.03777391 & 0.017172223 & 0.000184509 & 2.516760964 & 4.309894325 \\
\hline 95 & 4.289940828 & 628.7337278 & 0.037125719 & 0.016991595 & 0.000180628 & 2.490288146 & 4.272949234 \\
\hline 96 & 4.253446759 & 623.3851569 & 0.03649407 & 0.016814727 & 0.000176867 & 2.464366445 & 4.236632031 \\
\hline 97 & 4.217568354 & 618.1268179 & 0.035878405 & 0.016641504 & 0.000173223 & 2.438978829 & 4.20092685 \\
\hline 98 & 4.182290164 & 612.9564465 & 0.035278189 & 0.016471813 & 0.000169691 & 2.41410896 & 4.165818351 \\
\hline 99 & 4.147597254 & 607.8718535 & 0.03469291 & 0.016305548 & 0.000166265 & 2.389741159 & 4.131291706 \\
\hline 100 & 4.113475177 & 602.870922 & 0.034122077 & 0.016142606 & 0.000162942 & 2.365860376 & 4.097332571 \\
\hline 101 & 4.079909961 & 597.9516038 & 0.033565217 & 0.015982889 & 0.000159718 & 2.342452153 & 4.063927072 \\
\hline 102 & 4.046888083 & 593.1119174 & 0.033021878 & 0.015826301 & 0.000156588 & 2.319502602 & 4.031061782 \\
\hline 103 & 4.014396456 & 588.3499446 & 0.032491626 & 0.015672751 & 0.00015355 & 2.296998372 & 3.998723705 \\
\hline 104 & 3.982422411 & 583.6638286 & 0.031974045 & 0.015522152 & 0.000150599 & 2.274926627 & 3.966900259 \\
\hline 105 & 3.950953678 & 579.0517711 & 0.031468733 & 0.01537442 & 0.000147732 & 2.253275017 & 3.935579258 \\
\hline 106 & 3.919978373 & 574.5120303 & 0.030975306 & 0.015229474 & 0.000144946 & 2.232031659 & 3.904748899 \\
\hline 107 & 3.889484979 & 570.0429185 & 0.030493394 & 0.015087235 & 0.000142239 & 2.211185116 & 3.874397744 \\
\hline 108 & 3.859462337 & 565.6428001 & 0.030022642 & 0.014947628 & 0.000139607 & 2.190724371 & 3.844514709 \\
\hline 109 & 3.82989963 & 561.3100898 & 0.029562707 & 0.014810581 & 0.000137047 & 2.170638813 & 3.815089049 \\
\hline 110 & 3.80078637 & 557.0432503 & 0.029113261 & 0.014676025 & 0.000134556 & 2.150918216 & 3.786110345 \\
\hline 111 & 3.772112383 & 552.8407908 & 0.028673987 & 0.014543891 & 0.000132134 & 2.131552722 & 3.757568492 \\
\hline 112 & 3.743867803 & 548.7012652 & 0.02824458 & 0.014414116 & 0.000129775 & 2.112532825 & 3.729453687 \\
\hline 113 & 3.716043055 & 544.6232701 & 0.027824748 & 0.014286636 & 0.00012748 & 2.093849357 & 3.701756419 \\
\hline 114 & 3.688628848 & 540.6054439 & 0.027414207 & 0.014161391 & 0.000125245 & 2.075493469 & 3.674467457 \\
\hline 115 & 3.661616162 & 536.6464646 & 0.027012686 & 0.014038323 & 0.000123068 & 2.05745662 & 3.647577839 \\
\hline 116 & 3.63499624 & 532.7450489 & 0.026619922 & 0.013917376 & 0.000120947 & 2.039730565 & 3.621078864 \\
\hline 117 & 3.608760577 & 528.8999502 & 0.026235662 & 0.013798494 & 0.000118881 & 2.022307339 & 3.594962083 \\
\hline 118 & 3.582900914 & 525.109958 & 0.025859663 & 0.013681627 & 0.000116867 & 2.005179248 & 3.569219287 \\
\hline 119 & 3.557409225 & 521.373896 & 0.02549169 & 0.013566723 & 0.000114904 & 1.988338856 & 3.543842502 \\
\hline 120 & 3.53227771 & 517.6906212 & 0.025131515 & 0.013453732 & 0.00011299 & 1.971778974 & 3.518823978 \\
\hline 121 & 3.507498791 & 514.0590227 & 0.02477892 & 0.013342608 & 0.000111124 & 1.955492652 & 3.494156182 \\
\hline 122 & 3.483065097 & 510.4780207 & 0.024433693 & 0.013233305 & 0.000109303 & 1.939473167 & 3.469831792 \\
\hline 123 & 3.458969466 & 506.9465649 & 0.024095632 & 0.013125778 & 0.000107527 & 1.923714013 & 3.445843688 \\
\hline 124 & 3.435204928 & 503.4636342 & 0.023764538 & 0.013019984 & 0.000105794 & 1.908208897 & 3.422184943 \\
\hline 125 & 3.411764706 & 500.0282353 & 0.023440222 & 0.012915882 & 0.000104102 & 1.892951725 & 3.398848823 \\
\hline 126 & 3.388642206 & 496.6394017 & 0.0231225 & 0.012813432 & 0.00010245 & 1.877936596 & 3.375828774 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 127 & 3.365831012 & 493.2961931 & 0.022811194 & 0.012712594 & 0.000100838 & 1.863157796 & 3.353118418 \\
\hline 128 & 3.343324879 & 489.9976943 & 0.022506133 & 0.012613331 & 9.93E-05 & 1.848609789 & 3.330711548 \\
\hline 129 & 3.321117728 & 486.7430142 & 0.022207151 & 0.012515606 & 9.77E-05 & 1.834287212 & 3.308602122 \\
\hline 130 & 3.299203641 & 483.5312856 & 0.021914087 & 0.012419384 & \(9.62 \mathrm{E}-05\) & 1.820184863 & 3.286784257 \\
\hline 131 & 3.277576854 & 480.3616637 & 0.021626787 & 0.01232463 & \(9.48 \mathrm{E}-05\) & 1.806297704 & 3.265252224 \\
\hline 132 & 3.256231754 & 477.2333258 & 0.0213451 & 0.01223131 & \(9.33 \mathrm{E}-05\) & 1.792620844 & 3.244000444 \\
\hline 133 & 3.235162874 & 474.1454708 & 0.02106888 & 0.012139394 & 9.19E-05 & 1.779149545 & 3.22302348 \\
\hline 134 & 3.214364886 & 471.0973177 & 0.020797988 & 0.012048848 & \(9.05 \mathrm{E}-05\) & 1.765879205 & 3.202316038 \\
\hline 135 & 3.193832599 & 468.0881057 & 0.020532287 & 0.011959644 & \(8.92 \mathrm{E}-05\) & 1.752805361 & 3.181872956 \\
\hline 136 & 3.173560954 & 465.1170935 & 0.020271645 & 0.01187175 & \(8.79 \mathrm{E}-05\) & 1.739923682 & 3.161689204 \\
\hline 137 & 3.15354502 & 462.1835581 & 0.020015935 & 0.011785139 & 8.66E-05 & 1.72722996 & 3.141759881 \\
\hline 138 & 3.133779987 & 459.2867949 & 0.019765033 & 0.011699782 & 8.54E-05 & 1.714720113 & 3.122080205 \\
\hline 139 & 3.114261168 & 456.4261168 & 0.019518819 & 0.011615653 & \(8.41 \mathrm{E}-05\) & 1.702390173 & 3.102645515 \\
\hline 140 & 3.094983991 & 453.6008538 & 0.019277177 & 0.011532726 & 8.29E-05 & 1.690236288 & 3.083451266 \\
\hline 141 & 3.075943997 & 450.8103521 & 0.019039995 & 0.011450974 & 8.18E-05 & 1.678254714 & 3.064493023 \\
\hline 142 & 3.057136833 & 448.0539743 & 0.018807163 & 0.011370373 & 8.06E-05 & 1.666441811 & 3.045766461 \\
\hline 143 & 3.038558256 & 445.3310981 & 0.018578577 & 0.011290898 & 7.95E-05 & 1.654794043 & 3.027267358 \\
\hline 144 & 3.020204124 & 442.6411164 & 0.018354132 & 0.011212527 & 7.84E-05 & 1.643307972 & 3.008991597 \\
\hline 145 & 3.002070393 & 439.9834369 & 0.018133731 & 0.011135236 & \(7.73 \mathrm{E}-05\) & 1.631980253 & 2.990935157 \\
\hline 146 & 2.984153118 & 437.357481 & 0.017917275 & 0.011059004 & \(7.62 \mathrm{E}-05\) & 1.620807634 & 2.973094114 \\
\hline 147 & 2.966448445 & 434.7626841 & 0.017704673 & 0.010983808 & \(7.52 \mathrm{E}-05\) & 1.609786952 & 2.955464637 \\
\hline 148 & 2.948952613 & 432.198495 & 0.017495832 & 0.010909628 & \(7.42 \mathrm{E}-05\) & 1.598915128 & 2.938042985 \\
\hline 149 & 2.931661949 & 429.6643753 & 0.017290664 & 0.010836444 & \(7.32 \mathrm{E}-05\) & 1.588189166 & 2.920825506 \\
\hline 150 & 2.914572864 & 427.159799 & 0.017089085 & 0.010764234 & \(7.22 \mathrm{E}-05\) & 1.577606151 & 2.90380863 \\
\hline 151 & 2.897681855 & 424.6842526 & 0.01689101 & 0.010692981 & \(7.13 \mathrm{E}-05\) & 1.567163244 & 2.886988874 \\
\hline 152 & 2.880985496 & 422.2372343 & 0.016696359 & 0.010622664 & 7.03E-05 & 1.55685768 & 2.870362831 \\
\hline 153 & 2.864480443 & 419.8182537 & 0.016505053 & 0.010553267 & \(6.94 \mathrm{E}-05\) & 1.546686768 & 2.853927176 \\
\hline 154 & 2.848163426 & 417.4268317 & 0.016317017 & 0.01048477 & \(6.85 \mathrm{E}-05\) & 1.536647886 & 2.837678656 \\
\hline 155 & 2.83203125 & 415.0625 & 0.016132176 & 0.010417157 & \(6.76 \mathrm{E}-05\) & 1.526738481 & 2.821614093 \\
\hline 156 & 2.816080792 & 412.7248009 & 0.015950458 & 0.01035041 & 6.67E-05 & 1.516956062 & 2.805730383 \\
\hline 157 & 2.800309 & 410.413287 & 0.015771793 & 0.010284513 & \(6.59 \mathrm{E}-05\) & 1.507298204 & 2.790024487 \\
\hline 158 & 2.784712886 & 408.1275206 & 0.015596113 & 0.01021945 & \(6.51 \mathrm{E}-05\) & 1.497762545 & 2.774493437 \\
\hline 159 & 2.769289534 & 405.8670741 & 0.015423353 & 0.010155205 & \(6.42 \mathrm{E}-05\) & 1.488346778 & 2.759134329 \\
\hline 160 & 2.754036087 & 403.631529 & 0.015253447 & 0.010091762 & \(6.34 \mathrm{E}-05\) & 1.479048657 & 2.743944325 \\
\hline 161 & 2.738949754 & 401.420476 & 0.015086333 & 0.010029107 & \(6.27 \mathrm{E}-05\) & 1.46986599 & 2.728920647 \\
\hline 162 & 2.724027804 & 399.2335149 & 0.014921951 & 0.009967226 & 6.19E-05 & 1.460796642 & 2.714060578 \\
\hline 163 & 2.709267564 & 397.0702541 & 0.01476024 & 0.009906103 & 6.11E-05 & 1.451838526 & 2.69936146 \\
\hline 164 & 2.694666419 & 394.9303104 & 0.014601145 & 0.009845726 & 6.04E-05 & 1.442989609 & 2.684820693 \\
\hline 165 & 2.680221811 & 392.8133087 & 0.014444607 & 0.00978608 & 5.96E-05 & 1.434247906 & 2.670435731 \\
\hline 166 & 2.665931237 & 390.7188821 & 0.014290574 & 0.009727153 & 5.89E-05 & 1.425611481 & 2.656204085 \\
\hline 167 & 2.651792246 & 388.6466715 & 0.014138992 & 0.00966893 & 5.82E-05 & 1.417078443 & 2.642123315 \\
\hline 168 & 2.637802438 & 386.5963253 & 0.013989808 & 0.009611401 & \(5.75 \mathrm{E}-05\) & 1.408646947 & 2.628191037 \\
\hline 169 & 2.623959464 & 384.5674991 & 0.013842973 & 0.009554552 & \(5.68 \mathrm{E}-05\) & 1.40031519 & 2.614404912 \\
\hline 170 & 2.610261026 & 382.559856 & 0.013698438 & 0.009498372 & \(5.62 \mathrm{E}-05\) & 1.392081415 & 2.600762654 \\
\hline 171 & 2.596704871 & 380.5730659 & 0.013556155 & 0.009442849 & 5.55E-05 & 1.383943901 & 2.587262022 \\
\hline 172 & 2.583288794 & 378.6068056 & 0.013416077 & 0.009387971 & 5.49E-05 & 1.375900972 & 2.573900823 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 173 & 2.570010635 & 376.6607586 & 0.013278159 & 0.009333727 & 5.42E-05 & 1.367950986 & 2.560676908 \\
\hline 174 & 2.556868277 & 374.7346147 & 0.013142357 & 0.009280106 & 5.36E-05 & 1.360092344 & 2.547588171 \\
\hline 175 & 2.543859649 & 372.8280702 & 0.013008628 & 0.009227098 & 5.30E-05 & 1.352323479 & 2.534632551 \\
\hline 176 & 2.530982719 & 370.9408274 & 0.01287693 & 0.009174692 & 5.24E-05 & 1.344642861 & 2.521808027 \\
\hline 177 & 2.518235498 & 369.0725947 & 0.012747221 & 0.009122878 & 5.18E-05 & 1.337048996 & 2.50911262 \\
\hline 178 & 2.505616036 & 367.2230862 & 0.012619462 & 0.009071646 & 5.12E-05 & 1.329540422 & 2.49654439 \\
\hline 179 & 2.493122421 & 365.392022 & 0.012493615 & 0.009020986 & 5.07E-05 & 1.32211571 & 2.484101435 \\
\hline 180 & 2.48075278 & 363.5791275 & 0.012369641 & 0.008970889 & 5.01E-05 & 1.314773463 & 2.471781891 \\
\hline 181 & 2.468505277 & 361.7841335 & 0.012247503 & 0.008921345 & 4.95E-05 & 1.307512314 & 2.459583933 \\
\hline 182 & 2.456378113 & 360.0067762 & 0.012127165 & 0.008872345 & 4.90E-05 & 1.300330928 & 2.447505768 \\
\hline 183 & 2.444369521 & 358.246797 & 0.012008592 & 0.008823881 & 4.85E-05 & 1.293227997 & 2.43554564 \\
\hline 184 & 2.432477772 & 356.5039423 & 0.011891749 & 0.008775943 & \(4.79 \mathrm{E}-05\) & 1.286202243 & 2.423701829 \\
\hline 185 & 2.420701169 & 354.7779633 & 0.011776604 & 0.008728524 & \(4.74 \mathrm{E}-05\) & 1.279252414 & 2.411972645 \\
\hline 186 & 2.409038046 & 353.068616 & 0.011663122 & 0.008681614 & 4.69E-05 & 1.272377287 & 2.400356433 \\
\hline 187 & 2.397486772 & 351.3756614 & 0.011551274 & 0.008635205 & \(4.64 \mathrm{E}-05\) & 1.265575663 & 2.388851567 \\
\hline 188 & 2.386045746 & 349.6988646 & 0.011441026 & 0.00858929 & \(4.59 \mathrm{E}-05\) & 1.258846369 & 2.377456456 \\
\hline 189 & 2.374713397 & 348.0379954 & 0.01133235 & 0.008543861 & \(4.54 \mathrm{E}-05\) & 1.25218826 & 2.366169536 \\
\hline 190 & 2.363488183 & 346.392828 & 0.011225214 & 0.00849891 & 4.50E-05 & 1.245600209 & 2.354989273 \\
\hline 191 & 2.352368592 & 344.7631408 & 0.011119591 & 0.008454429 & \(4.45 \mathrm{E}-05\) & 1.239081119 & 2.343914163 \\
\hline 192 & 2.341353141 & 343.1487163 & 0.011015451 & 0.008410412 & 4.40E-05 & 1.232629911 & 2.332942729 \\
\hline 193 & 2.330440373 & 341.549341 & 0.010912768 & 0.00836685 & 4.36E-05 & 1.226245531 & 2.322073523 \\
\hline 194 & 2.319628859 & 339.9648056 & 0.010811513 & 0.008323737 & 4.31E-05 & 1.219926945 & 2.311305122 \\
\hline 195 & 2.308917197 & 338.3949045 & 0.010711662 & 0.008281067 & \(4.27 \mathrm{E}-05\) & 1.213673143 & 2.300636131 \\
\hline 196 & 2.29830401 & 336.8394357 & 0.010613187 & 0.008238831 & \(4.22 \mathrm{E}-05\) & 1.207483132 & 2.290065179 \\
\hline 197 & 2.287787946 & 335.2982013 & 0.010516064 & 0.008197025 & \(4.18 \mathrm{E}-05\) & 1.201355941 & 2.279590921 \\
\hline 198 & 2.277367677 & 333.7710068 & 0.010420269 & 0.00815564 & 4.14E-05 & 1.19529062 & 2.269212037 \\
\hline 199 & 2.267041901 & 332.257661 & 0.010325776 & 0.008114671 & 4.10E-05 & 1.189286235 & 2.25892723 \\
\hline 200 & 2.256809339 & 330.7579767 & 0.010232563 & 0.008074112 & 4.06E-05 & 1.183341874 & 2.248735226 \\
\hline 201 & 2.246668733 & 329.2717694 & 0.010140606 & 0.008033956 & 4.02E-05 & 1.177456639 & 2.238634776 \\
\hline 202 & 2.236618849 & 327.7988586 & 0.010049883 & 0.007994198 & 3.98E-05 & 1.171629655 & 2.228624651 \\
\hline 203 & 2.226658477 & 326.3390663 & 0.009960373 & 0.007954831 & 3.94E-05 & 1.165860059 & 2.218703645 \\
\hline
\end{tabular}

Sampling station id: S19; Input Viin: 146.56; A: 23.2; Beta: 0.03; DeltaA: 0.01
\begin{tabular}{|r|l|r|l|l|r|r|r|}
\hline \(\boldsymbol{t}\) & \multicolumn{1}{l|}{ Afb } & \multicolumn{1}{l|}{ Output(Vo) } & \multicolumn{1}{l|}{ DeltaA } & \multicolumn{1}{l|}{ AfbGoldR } & \multicolumn{1}{l|}{ DeltaAfbGoldR } & OutputGoldR & DeltaAfbAfbG \\
\hline \hline 0 & 0 & 3400.192 & 23.2 & 0 & 23.2 & 3400.192 & 0 \\
1 & 13.67924528 & 2004.830189 & 9.520754717 & 1.510229386 & 21.68977061 & 221.3392188 & 12.1690159 \\
2 & 9.698996656 & 1421.48495 & 3.980248628 & 0.780519064 & 0.729710322 & 114.3928741 & 8.918477591 \\
3 & 7.512953368 & 1101.098446 & 2.186043288 & 0.52624757 & 0.254271495 & 77.12684381 & 6.986705798 \\
4 & 6.131078224 & 898.5708245 & 1.381875144 & 0.396936614 & 0.129310956 & 58.17503015 & 5.73414161 \\
5 & 5.178571429 & 758.9714286 & 0.952506796 & 0.318639634 & 0.07829698 & 46.69982472 & 4.859931795 \\
6 & 4.482225657 & 656.9149923 & 0.696345772 & 0.266142248 & 0.052497385 & 39.00580793 & 4.216083408 \\
7 & 3.950953678 & 579.0517711 & 0.531271978 & 0.228496389 & 0.03764586 & 33.48843073 & 3.72245729 \\
8 & 3.53227771 & 517.6906212 & 0.418675968 & 0.200180787 & 0.028315601 & 29.33849618 & 3.332096923 \\
9 & 3.193832599 & 468.0881057 & 0.338445111 & 0.178109234 & 0.022071553 & 26.10368941 & 3.015723365 \\
10 & 2.914572864 & 427.159799 & 0.279259735 & 0.160421469 & 0.017687766 & 23.51137043 & 2.754151396 \\
11 & 2.680221811 & 392.8133087 & 0.234351053 & 0.145929431 & 0.014492037 & 21.38741748 & 2.53429238
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 12 & 2.48075278 & 363.5791275 & 0.199469031 & 0.1338388 & 0.012090631 & 19.61541454 & 2.34691398 \\
\hline 13 & 2.308917197 & 338.3949045 & 0.171835583 & 0.123598356 & 0.010240444 & 18.11457507 & 2.185318841 \\
\hline 14 & 2.159344751 & 316.4735666 & 0.149572447 & 0.114813593 & 0.008784763 & 16.82708017 & 2.044531158 \\
\hline 15 & 2.027972028 & 297.2195804 & 0.131372723 & 0.107194719 & 0.007618873 & 15.71045809 & 1.920777309 \\
\hline 16 & 1.911667765 & 280.1740277 & 0.116304263 & 0.100524079 & 0.006670641 & 14.73280898 & 1.811143687 \\
\hline 17 & 1.80798005 & 264.9775561 & 0.103687715 & 0.094635018 & 0.005889061 & 13.86970825 & 1.713345032 \\
\hline 18 & 1.714961561 & 251.3447664 & 0.093018489 & 0.089397776 & 0.005237242 & 13.10213806 & 1.625563785 \\
\hline 19 & 1.631046119 & 239.0461192 & 0.083915442 & 0.08470981 & 0.004687966 & 12.41506972 & 1.546336309 \\
\hline 20 & 1.554959786 & 227.8949062 & 0.076086334 & 0.080489014 & 0.004220796 & 11.79646985 & 1.474470772 \\
\hline 21 & 1.485655738 & 217.7377049 & 0.069304048 & 0.07666887 & 0.003820144 & 11.23658956 & 1.408986868 \\
\hline 22 & 1.422265817 & 208.4472781 & 0.063389921 & 0.073194916 & 0.003473954 & 10.72744689 & 1.349070901 \\
\hline 23 & 1.36406397 & 199.9172154 & 0.058201847 & 0.070022133 & 0.003172783 & 10.26244388 & 1.294041836 \\
\hline 24 & 1.310438319 & 192.05784 & 0.053625651 & 0.067112985 & 0.002909149 & 9.836079015 & 1.243325334 \\
\hline 25 & 1.260869565 & 184.7930435 & 0.049568754 & 0.064435921 & 0.002677063 & 9.443728607 & 1.196433644 \\
\hline 26 & 1.214914118 & 178.0578132 & 0.045955447 & 0.061964236 & 0.002471685 & 9.081478391 & 1.152949882 \\
\hline 27 & 1.172190784 & 171.7962813 & 0.042723334 & 0.059675167 & 0.002289069 & 8.745992504 & 1.112515617 \\
\hline 28 & 1.132370168 & 165.9601718 & 0.039820616 & 0.057549198 & 0.002125969 & 8.434410451 & 1.07482097 \\
\hline 29 & 1.095166163 & 160.5075529 & 0.037204005 & 0.055569496 & 0.001979702 & 8.144265347 & 1.039596667 \\
\hline 30 & 1.060329068 & 155.4018282 & 0.034837096 & 0.053721469 & 0.001848027 & 7.873418458 & 1.006607599 \\
\hline 31 & 1.027639972 & 150.6109142 & 0.032689096 & 0.051992402 & 0.001729067 & 7.620006403 & 0.97564757 \\
\hline 32 & 0.996906153 & 146.1065658 & 0.030733818 & 0.050371167 & 0.001621235 & 7.382398213 & 0.946534986 \\
\hline 33 & 0.967957276 & 141.8638184 & 0.028948877 & 0.048847982 & 0.001523185 & 7.1591602 & 0.919109295 \\
\hline 34 & 0.940642232 & 137.8605255 & 0.027315045 & 0.047414213 & 0.001433769 & 6.949026997 & 0.893228019 \\
\hline 35 & 0.914826498 & 134.0769716 & 0.025815733 & 0.04606221 & 0.001352002 & 6.750877565 & 0.868764288 \\
\hline 36 & 0.890389929 & 130.4955481 & 0.024436569 & 0.044785175 & 0.001277036 & 6.563715184 & 0.845604755 \\
\hline 37 & 0.86722488 & 127.1004785 & 0.023165049 & 0.043577038 & 0.001208137 & 6.386650686 & 0.823647842 \\
\hline 38 & 0.845234625 & 123.8775867 & 0.021990255 & 0.042432371 & 0.001144667 & 6.218888328 & 0.802802254 \\
\hline 39 & 0.824332007 & 120.8140989 & 0.020902619 & 0.041346301 & 0.001086071 & 6.059713835 & 0.782985706 \\
\hline 40 & 0.80443828 & 117.8984743 & 0.019893727 & 0.040314439 & 0.001031861 & 5.908484237 & 0.764123841 \\
\hline 41 & 0.785482124 & 115.12026 & 0.018956157 & 0.039332827 & 0.000981612 & 5.764619185 & 0.746149296 \\
\hline 42 & 0.767398783 & 112.4699656 & 0.018083341 & 0.038397881 & 0.000934946 & 5.627593512 & 0.729000901 \\
\hline 43 & 0.750129333 & 109.938955 & 0.01726945 & 0.037506351 & 0.00089153 & 5.496930823 & 0.712622982 \\
\hline 44 & 0.733620035 & 107.5193524 & 0.016509297 & 0.036655281 & 0.00085107 & 5.372197963 & 0.696964755 \\
\hline 45 & 0.717821782 & 105.2039604 & 0.015798253 & 0.035841977 & 0.000813303 & 5.253000221 & 0.681979805 \\
\hline 46 & 0.702689605 & 102.9861885 & 0.015132177 & 0.035063982 & 0.000777996 & 5.138977157 & 0.667625623 \\
\hline 47 & 0.68818225 & 100.8599905 & 0.014507355 & 0.034319043 & 0.000744939 & 5.02979896 & 0.653863207 \\
\hline 48 & 0.6742618 & 98.81980935 & 0.01392045 & 0.033605099 & 0.000713944 & 4.925163266 & 0.640656701 \\
\hline 49 & 0.660893345 & 96.86052871 & 0.013368454 & 0.032920254 & 0.000684845 & 4.824792356 & 0.627973092 \\
\hline 50 & 0.648044693 & 94.97743017 & 0.012848653 & 0.032262764 & 0.000657489 & 4.7284307 & 0.615781929 \\
\hline 51 & 0.635686103 & 93.1661552 & 0.01235859 & 0.031631023 & 0.000631741 & 4.63584278 & 0.604055079 \\
\hline 52 & 0.623790062 & 91.42267154 & 0.01189604 & 0.031023548 & 0.000607475 & 4.546811172 & 0.592766515 \\
\hline 53 & 0.612331081 & 89.74324324 & 0.011458981 & 0.030438966 & 0.000584582 & 4.461134839 & 0.581892115 \\
\hline 54 & 0.601285507 & 88.1244039 & 0.011045574 & 0.029876007 & 0.000562959 & 4.378627617 & 0.5714095 \\
\hline 55 & 0.590631365 & 86.56293279 & 0.010654142 & 0.029333494 & 0.000542513 & 4.299116864 & 0.561297871 \\
\hline 56 & 0.580348209 & 85.0558335 & 0.010283156 & 0.028810332 & 0.000523162 & 4.222442255 & 0.551537877 \\
\hline 57 & 0.570416994 & 83.60031471 & 0.009931214 & 0.028305504 & 0.000504828 & 4.148454701 & 0.54211149 \\
\hline
\end{tabular}

Sampling station id: S19; Input Viin: 146.56; A: 232; Beta: 0.03; DeltaA: 0.01
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline t & Afb & Output(Vo) & DeltaA & AfbGoldR & DeltaffbGoldr & OutputGoldR & DeltaAfbAfbG \\
\hline 0 & 0 & 34001.92 & 232 & 0 & 232 & 34001.92 & 0 \\
\hline 1 & 29.14572864 & 4271.59799 & 2.8542714 & 214686 & 0.3957853 & 35.1137043 & 27.54151396 \\
\hline 2 & 15.54959786 & 2278.949062 & 596130 & 0.804890137 & 0.799324548 & 17.9646985 & 70772 \\
\hline 3 & 10.6032906 & 554.0182 & 963071 & 537214687 & . 26767545 & 8.7341845 & 7599 \\
\hline 4 & 8.04438280 & 1178.984743 & 907875 & 0.403144394 & 34070294 & 59.08484237 & 8408 \\
\hline 5 & 6.480446927 & 949.7743017 & 1.563935874 & 0.322627641 & 0.080516753 & 47.28430 & 6.157819287 \\
\hline 6 & 5.425631431 & 795.1805426 & 1.054815496 & 0.268918695 & 0.053708945 & 39.41272396 & 36 \\
\hline 7 & 4.66613033 & 83.86806 & 0.759501101 & 914 & 0.038378781 & 87929 & 590416 \\
\hline 8 & 4.093154552 & 599.8927311 & 0.572975778 & 0.201747484 & 0.02879243 & 29.56811131 & . 891407068 \\
\hline 9 & 3.645505971 & 534.2853551 & 76485 & 0.179348426 & 022399058 & 28530536 & 7545 \\
\hline 10 & 3.28611898 & 481.6135977 & 59386991 & 0.161426063 & 0.017922364 & 23.658603 & 24692917 \\
\hline 11 & 2.991232594 & 8.3950 & 94886386 & 0.146760249 & 0.014665813 & 50918216 & 2.844472345 \\
\hline 12 & 2.74491244 & 2.2943682 & 2463201 & 13453732 & 0.01222292 & 9.717789 & 2.610375126 \\
\hline 13 & 2.53607345 & 371.686926 & 0.20883898 & 0.124193836 & 0.01034348 & 18.2018486 & . 41187962 \\
\hline 14 & 2.356765542 & 35.4075579 & 0.17930791 & 0.115327258 & 0.008866579 & 16.9023628 & 828 \\
\hline 15 & 2.20113852 & 59886 & 0.155627023 & 0.107642341 & 0.0076849 & 606 & 2.093496179 \\
\hline 16 & 2.0 & 302.6158775 & 0.136346779 & 0.100917621 & 0.006 & 14.79048657 & 7412 \\
\hline 17 & 1.94435132 & 284.96413 & 0.1204404 & . 094983721 & 0.0059339 & 13.920814 & 849367603 \\
\hline 18 & 1.83718720 & 9.258156 & 0.107164121 & 0.089708888 & 0.005274833 & 1477346 & 78315 \\
\hline 19 & 1.741218853 & 255.1930351 & 0.0959683 & 0.084989097 & 0.004719791 & 12.45600209 & . 556229756 \\
\hline 20 & 1.654778887 & 52439 & 0.0864399 & 0.0807 & 0.004247976 & 11.83341874 & 766 \\
\hline 21 & 1.5 & 231.0540908 & 0.07826353 & 0.07689758 & 0.003843541 & 11.27010938 & 777 \\
\hline 22 & 1.50532052 & 220.619776 & 0.07119482 & 0.073403342 & 0.003494239 & 10.75799376 & 1.431917188 \\
\hline 23 & 1.440278123 & 1.0871617 & . 0650424 & . 07021285 & 0.0031904 & 29039 & . 370065265 \\
\hline 24 & 1.380623661 & . 3442038 & 0.05965446 & 0.067288171 & 0.002924687 & 9.86175429 & 31333549 \\
\hline 25 & 1.3 & 194.2966857 & 0.054909375 & 0.064597393 & 0.002690777 & 67393962 & 6892 \\
\hline 26 & 1.275005496 & 8648055 & 0.05070879 & 3543 & 0.00248385 & 0336091 & 12891952 \\
\hline 27 & 1.22803303 & 179.9805209 & 0.046972466 & 0.059813635 & 02299908 & 6325 & 8219395 \\
\hline 28 & 1.18439861 & .58 & 0.0436344 & 0.05767796 & 0.002135 & 4532825 & 126720647 \\
\hline 29 & 1.14375862 & 167.62926 & 0.04063998 & 0.055689547 & . 00019884 & 618599 & . 88069081 \\
\hline 30 & 1.10581506 & 162.06825 & 0.03794356 & 0.053833659 & 0.001855887 & .88986110 & 1403 \\
\hline 31 & 1.070308175 & 156.8643661 & 0.035506887 & 0.05209748 & 0.00173618 & 7.63540661 & 18210695 \\
\hline 32 & 1.03 & 1.9842 & 0.033297626 & 0.050469788 & 0.001627692 & 7.3985206 & . 886540761 \\
\hline 33 & 1.005722213 & 147.39864 & 0. 312883 & 0.048940723 & 0.0015290 & 7272313 & 0.95678149 \\
\hline 34 & 0.976266622 & 143.0816361 & 94555 & 047015 & . 014391 & 618322 & 28765037 \\
\hline 35 & 0.948487326 & 139.0103025 & 0.027779296 & . 4614466 & 0.001356918 & 6.762962275 & 0.90234266 \\
\hline 36 & 0.92224519 & 135.164255 & 2624213 & 0.044863118 & 0.0012815 & 6.57513854 & 2072 \\
\hline 37 & 0.897416061 & 131.5252978 & 0.024829129 & 043650829 & 001212289 & 97465528 & 0.853765231 \\
\hline 38 & 0.873888805 & 128.0771433 & 0.023527255 & 0.042502334 & 0.001148496 & 229142015 & . 831386472 \\
\hline 39 & 0.851563647 & 124.805168 & 0.0223251 & 041412725 & 0.001089609 & 6.06944893 & . 810150922 \\
\hline 40 & 0.830350752 & 121.6962062 & 21212895 & 0.040377587 & 351 & 91773912 & 73165 \\
\hline 41 & 0.810169018 & 118.7383713 & 0.020181734 & 0.039392935 & 0.00098465 & 5.773428528 & 0.770776083 \\
\hline 42 & 0.790945043 & 115.9209055 & 0.019223975 & 0.038455163 & 0.000937772 & 5.63598872 & 0.752 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|r|r|r|} 
\\
43 & 0.772612229 & 113.2340482 & 0.018332814 & 0.037561002 & 0.000894161 & 5.504940444 & 0.735051227 \\
44 & 0.755110012 & 110.6689233 & 0.017502217 & 0.036707478 & 0.000853524 & 5.379847956 & 0.718402534 \\
45 & 0.738383195 & 108.2174411 & 0.016726816 & 0.035891882 & 0.000815596 & 5.260314275 & 0.702491313 \\
46 & 0.722381368 & 105.8722132 & 0.016001828 & 0.035111742 & 0.00078014 & 5.145976924 & 0.687269625 \\
47 & 0.707058393 & 103.6264781 & 0.015322974 & 0.034364794 & 0.000746948 & 5.036504271 & 0.672693599 \\
48 & 0.692371971 & 101.4740361 & 0.014686422 & 0.033648965 & 0.000715829 & 4.931592317 & 0.658723006 \\
49 & 0.678283242 & 99.40919191 & 0.014088729 & 0.032962349 & 0.000686616 & 4.830961875 & 0.645320893 \\
50 & 0.664756447 & 97.42670487 & 0.013526795 & 0.032303194 & 0.000659155 & 4.734356091 & 0.632453253 \\
51 & 0.651758625 & 95.52174402 & 0.012997822 & 0.031669884 & 0.000633309 & 4.641538252 & 0.62008874 \\
52 & 0.639259341 & 93.689849 & 0.012499284 & 0.03106093 & 0.000608955 & 4.552289851 & 0.608198411 \\
53 & 0.627230453 & 91.92689521 & 0.012028888 & 0.030474951 & 0.000585978 & 4.466408872 & 0.596755502 \\
54 & 0.615645897 & 90.22906273 & 0.011584556 & 0.029910673 & 0.000564278 & 4.38370826 & 0.585735224 \\
55 & 0.604481501 & 88.59280875 & 0.011164397 & 0.029366912 & 0.000543762 & 4.304014563 & 0.575114589 \\
56 & 0.593714812 & 87.01484287 & 0.010766689 & 0.028842568 & 0.000524344 & 4.227166715 & 0.564872245 \\
57 & 0.583324952 & 85.492105 & 0.01038986 & 0.028336619 & 0.000505948 & 4.153014953 & 0.554988333 \\
58 & 0.573292478 & 84.02174558 & 0.010032474 & 0.027848116 & 0.000488504 & 4.081419842 & 0.545444362 \\
59 & 0.563599261 & 82.60110776 & 0.009693217 & 0.027376169 & 0.000471946 & 4.012251398 & 0.536223092 \\
\hline
\end{tabular}


ORDINUL MINISTRULUI EDUCAȚIEI, CERCETÄRII, TINERETULUI SI SPORTULUI
\[
\text { Nr. } 57+3 \text {. } 12 \text {. } 19
\]
privind atribuirea titlului de DOCTOR

LISTA
persoanelor cărora li se atribuie titlul de DOCTOR in domeniul specificat și, dupā caz, cu distincția mentionatả, urmare a validării tezei de doctorat de cåtre CNATDCU, intrunit in data de 12.09.2012


ORDINUL MINISTRULUI EDUCATIIEI, CERCETĀRII, TINERETULUI ṢI SPORTULUI
\[
\text { Nr. .5743 } \sin 12.092012
\]
privind atribuirea titlului de DOCTOR

\section*{LISTA}
persoanelor cärora li se atribuie titlul de DOCTOR în domeniul specificat și, după caz, cu distincția menţionatā, urmare a validārii tezei dc doctorat de către CNATDCU,
intrunit in data de 12.09.2012
Anexann.
35
Instifuj̧ia
Universitatea "Lucian Blaga" din Sibiu
\begin{tabular}{|c|c|c|c|}
\hline Nrectr: & Numetos sl Prenumele & Somendia & Disfractia \\
\hline 41 & Stroia 1. Marius Daniel & Filologie & . \\
\hline \% 42 & Surdu 1. Alexandru & Filologie & \\
\hline 43 & Serban R. Liiana Carmen (Prodan) & Medicină & \\
\hline 44 & Tătulea Gh. George Robert & Teologie & MAGNA CUM LAUDE \\
\hline 45 & Tecoantă I. Ovidiu loan & Medicinā & - \\
\hline 46 & Tomita S. Maria (Neagoi) & Finante & . \\
\hline 47.8 & Tudor N. Nicolae & Inginerie si management & . \\
\hline 48 & Tudose \$. Silviu & Teologie & MAGNA CUM LAUDE \\
\hline 49 & Ureche G. Maria Corina (Beca) & Medicinä & . \\
\hline 50 & Virvorea D. Daniela (Popa) & Management & . \\
\hline 51 & Vlad Stoica G. Ana (Timovean) & Management & . \\
\hline 52 & Zaharia E. Adrian & Drept & . \\
\hline 53 & Zerbes G. Mihai Victor \(\sim 120: 1 A_{i+1}\) & Inginerie industrialä & \\
\hline
\end{tabular}

LISTA persoanelor pentru care CNATDCU, reunit in data de 12.09.2012.
a invalidat argumentat teza de doctorat sau, după caz,
a propus amânarea luării deciziei privind validarea tezei de doctorat
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Instituţia}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Universitatea "Lucian Blaga" din Sibiu}} & "Ronis \\
\hline & & & &  \\
\hline Nr . crt. & Numele si Prenumele & Domeniul & Rezolutia & Argumentarea Rezolutiẹ \\
\hline 1 & Bantaş P. Mihaela Zoe (Hărătău) & Medicină & Se amāná luarea deciziei privind validarea tezei de doctorat & Lucraréa va fi anduzată in cadrul unnătoarei intrúniri. \\
\hline 2 & Băcilã l. Ionuṭ Ciprian & Medicină & Se amánả luarea deciziei privind validarea tezei de doctorat & Lucrarea va fi analizatǎ in cadrul următoarei intruniri. \\
\hline 3 & Boicean G. Adrian Gheorghe & Medicină & Se invalideazǎ teza de doctorat & Fără publicații suficiente. \\
\hline 4 & Bolca A, Ciprian Nicolae & Medicinã & Se invalideazả teza de doctorat & Publicații insuficiente \\
\hline 5 & Drãgoiu C. L. Alexandra Paula (Dumitrescu) & Management & Nediscutat & \\
\hline 6 & Fabian A. Ralf Detlef & Calculatoare și tehnologia informației & Se amãnã luarea deciziei privind validarea tezei de doctorat & \begin{tabular}{l}
Teza este insuficient sustinutả din punct de vedere al validǎrii contribufiilor. Recomandǎm extinderea tezei cu un capitol substanțial de validare, bazat pe metodologii știinţfice și ingineresti general acceptatet utilizate. prin care contribuțitie tezei să fie clar reliefate. \\
Comisia se va pronunta asupra acordǎrii titlului dupả completarea tezei cu observațiile de mai sus.
\end{tabular} \\
\hline 7 & Filote G. Veronica Isabela (Cràciun) & Inginerie industriala & Se amånǎ luarea deciziei privind validarea tezei de doctorat & Se solicită avizul comisiei Ingineria resurselor vegetale și animale. \\
\hline 8 & Hojda G. Axenia (Rảdulescu) & Inginerie industrială & Se amảnà luarea deciziei privind validarea tezei de doctorat & Se solicită avizul comisiei Ingineria resurselor vegetale și animale. \\
\hline 9 & Mandrean L. Liliana Nicoleta & Inginerie industrialã & Se amảnả luarea deciziei privina validarea tezei de doctoral & Se solicită avizul comisiei Ingineria resurselor vegetale și animale. \\
\hline 10 & Minalca G. George Liviu & Inginerie industrială & Se amâná luarea deciziei privind validarea tezei de doctorat & Se solicită avizul comisiei Ingineria resurselor vegetale ṣì animale. \\
\hline
\end{tabular}

\section*{APPENDIX 4: AS4. "Proof-of-Concept" User-Validation Assessment}

\section*{"Proof-of-Concept" User-Validation Assessment}

The evaluation of the self-adjustment and support capacity of ecosystems has become a hotspot in the research world in the fields of environment protection, sustainable management of natural resources and biodiversity. Although progress has been attained regarding the know how/knowledge on the structure of ecological systems, the analysis of ecological processes and the modelling still require a considerable scientifical effort.
Creating a modelling system which allows the simulation and prediction (with an acceptable degree of error) of the dynamics of ecological systems, represents an essential step in the elaboration of management plans for a sustainable use of ecosystem resources and services, at the same time being an important tool for sizing the socio-economical development.
The research of Mr. Ralf D. Fabian takes part in this context, summing up with the elaboration of the "Tool for Exploring Homeostasis in Benthic Communities"/ Proof of Concept Application Toolkit and is based on the interface construed as mirror for functionality, enabling the uservalidation of \(\mathrm{A}, \beta, \Delta \mathrm{t}\), and DIU .

The application uses two kinds of scenarios: descriptive, to interpret facts, and, much more significative, normative, to prepare actions.

The assessment below:
1. Refers to the "Tool for Exploring Homeostasis in Benthic Communities" as defined in Chapter 6 and submitted to "Proof-of-Concept" user validation according to Chapter 7 of "Validating ProcessOriented Modelling Mechanisms" (Addendum to the PhD Thesis "Bounded Rationality in Agent Orientation - "Just-In-Time" Visual Pattern Recognition").
2. Follows the request of Ralf D. Fabian, author of the Addendum, as designer of the toolkit for ecologic research, focused on setting up "What-if" scenarios aimed at preserving of (oversimplified) ecological (sub) systems.
3. Was performed by member(s) of the Department of Environmental Sciences of the Faculty of Sciences of the "Lucian Blaga" University of Sibiu, involved in the project in the field of biodiversity - stability - self-regulation - productivity assessment in the lotic ecosystems cases and in the field of sustainable management of the ecosystems resources and services.
4. Was based on the following background:

At first (October 2012, "Plan A") it was intended to design only one application ("Preservation of Ecological Systems Modelled Using GST Applied to Benthic Communities in Transylvanian Lotic Systems") for both validating and continuing the thesis. Likewise, it was necessary to speed up and reduce the scope of the "Proof-of-Concept" (PoC) application for to (new title): "Homeostasis in Benthic Communities Modelled Via GST".

It has been necessary to set up a "Plan B" - but from the joint post-thesis work, only and partially could be used in ADT. Plan B suggests a new approach to CybMd ("Non-algorithmic cybernetic modelling of living systems").
5. Is confined to the claims regarding the toolkit interface as expressed in Figure 7.1, at July \(19^{-}\) \({ }^{\text {th }} 2013\), as well as to the refinements, the designer accepted to carry out in November 2013 based on suggestions proposed until October \(31^{-s t}\) after extended testing the toolkit in laboratory work in line with the short and middle range intentions in Chapter. 8.

To conclude:
- The toolkit architectonics as expressed in Chapter 6 is reflected in the interface.
- The toolkit functionality accessible through the interface is sufficient to set up "What-if" scenarios aiming at investigating ecologic stability in (oversimplified) benthic communities in Transylvanian lotic systems.
- I therefore consider that the results obtained by Mr Ralf D. Fabian are in accordance with the previously set objectives, the toolkit is functional, easy to use, having an appealing interface, being adequate for cybernetic modelling of ecological systems.
- Transdisciplinary approach represents an essential prerequisite for attaining progress in the knowhow of applied sciences, which leads/determines us to promote the development of cybernetic modelling applications on ecological systems using What-if scenarios.

Assoc. prof. PhD Angela Bănăduc

\section*{APPENDIX 5: AC5. Integral code of the toolkit}
```

\#pragma once
\#include <windows.h>
\#include <math.h>
\#include "ProjectInfoDlg.h"
\#include "AboutDlg.h"
\#pragma comment (lib, "user32.lib")
using namespace System;
using namespace System::Windows::Forms;

```
// global variables
double Viin; // value for amplification input
double A; // amplification value
double Afb; // amplification value with feedback
double beta; // feedback ratio
int t; // snapshot id
int delta_t; // minimum time span for observable changes
int diu; // delay
double delta_A; // desired amplification gain
//--------------------------------------------------------------
HANDLE hEventObject; // handle of the Event waited for
HANDLE hCloseEvent; // handle of termination
HANDLE hContinueEvent; // handle of iterations
DWORD dwTimeout=5000; // Wait duration (ms), see domino()
DWORD dwCloseWaitMillies=2000; // Wait duration (ms) for before closing handle
BOOL homeostaticState=FALSE; //
HANDLE hIterationThread; // thread for Iterations
HANDLE hDecisionThread; // thred for decisions
HANDLE hTesterThread; // thread for testing
DWORD WINAPI IterationThreadProc(LPVOID lpParam);
DWORD WINAPI DecisionThreadProc(LPVOID lpParam);
DWORD WINAPI TesterThreadProc(LPVOID lpParam);
BOOL checkHomeostaticState(double dVal);
INT domino();
// macrochronic version
INT domino()\{
```

 INT RetVal;
 // return value propagating the possible exception in DOMONO, means:
 // RetVal == 0 - the event waited for occured before timeout duration elapsed time;
 no exception
// RetVal == -1 - homeostatic state not attained but still good chances (system
stabilizabil in due time),
// RetVal == -2 - homeostatic state not attained microchronicaly (in current
interration) but still good chances (system stabilizabil in due time)
// RetVal == -3 - homeostatic state not attained microchronicaly (forlast itteration)
but still good chances (system stabilizabil in due time)
// RetVal == -4 - the event did not occur in due time; exception raised
(simulated/propagated via return value)
INT dwWaitResult;
// dwWaitResult == WAIT_TIMEOUT means: since timeout elapsed (simulated) exception is
rased
// dwWaitResult == WAIT_OBJECT_0 means: event happend before timeout duration elapsed
(here less then dwTimeout/1000-s)

```
```

 ResetEvent(hEventObject);
 // hEventObject denotes the manner WAIT terminates
 dwWaitResult = WaitForSingleObject(hEventObject, dwTimeout);
 //dwTimeout - Wait duration (ms)
 if(dwWaitResult == WAIT_OBJECT_0)
 {
 // bivalent IF (favorable wait termination)
 if(homeostaticState){
 RetVal = 0;
 // SUCCESS, system stable
 }
 else{
 // inform caller
 // homeostatic state not attained but still good chances
 RetVal = -1;
 }
 }
 else{
 // event not occured in due time
 RetVal = -4;
 }
 return RetVal;
 // return t1-t6 == t0, hence retunr -1, -2, -3 have same meaning
 }
DWORD WINAPI TesterThreadProc(LPVOID lpParam){
Sleep(200);
SetEvent(hEventObject);
//MessageBox::Show(L"Init set event");
return 1;
}
BOOL checkHomeostaticState(double dVal){
if(dVal<=delta_A)
return true;
else
return false;
}
DWORD WINAPI DecisionThreadProc(LPVOID lpParam){
DWORD dResult;
BOOL bStopped = FALSE;
dwTimeout*=1000; //ms to sec
do{
dResult = domino();
switch(dResult){
case 0:
bStopped = TRUE;
//MessageBox::Show("0");
break;
case -1:
bStopped = FALSE;
//MessageBox::Show("-1");
SetEvent(hContinueEvent);
break;
case -4:
bStopped = TRUE;

```
```

 }
 }
 while(!bStopped);
 ProjectGUI::MainForm::autoRef->BeginInvoke(ProjectGUI::MainForm::autoRef-
 >updateDecisionMsgDelegate, "Decision terminated: "+dResult);
//MessageBox::Show("Decision terminated"+dResult);
return dResult;
}
DWORD WINAPI IterationThreadProc(LPVOID lpParam){
int nResult;
int nIterationResult;
int i=0;
// i means the ith iteration (repetitions)
int period = delta_t*1000; //ms to sec
double Vo = 0.0;
double VoGold = 0.0;
double betaGold = 13.0/21.0; //silver
double deltaBeta = 0.0;
t=0;
Afb = 0.0;
double Apr = 0.0;
double AprGold = 0.0;
double Amp = 0.0;
double AmpGold = 0.0;
double AfbGold = 0.0;
double deltaAfb = 0.0;
double deltaAfbGold = 0.0;
double deltaAfbAfbG = 0.0;
int count = 0;
do{
nResult = WaitForSingleObject (hContinueEvent, 1000);
if (nResult == WAIT_TIMEOUT)
break; // no need to continue
Apr = Amp;
AprGold = AmpGold;
if(i == 0){
Amp = A; AmpGold = A;
Afb = 0; AfbGold = 0;
Vo = Viin * Amp;
VoGold = Viin * AmpGold;
}
else{
Amp = Amp/(1+beta*Amp);
AmpGold = AmpGold/(1+betaGold*AmpGold);
Afb = Amp;
AfbGold = AmpGold;
Vo = Viin * Amp;
VoGold = Viin * AmpGold;
}

```
```

 // Barkhausen
 // macrochronic
 // discrete time
 t=i;
 deltaAfb = abs(Apr-Amp);
 deltaAfbGold = abs(AprGold-AmpGold);
 deltaAfbAfbG = abs(Afb-AfbGold);
 deltaBeta = abs(beta-betaGold);
 homeostaticState = checkHomeostaticState(deltaAfb);
 ProjectGUI::MainForm::autoRef->BeginInvoke(ProjectGUI::MainForm::autoRef-
 >addListaDataDelegate ,
t, Afb, Vo, deltaAfb, betaGold, deltaBeta, AfbGold, deltaAfbGold,
VoGold, deltaAfbAfbG);
Sleep(period);
i++;
ResetEvent(hContinueEvent);
SetEvent(hEventObject);
}
while(nResult == WAIT_OBJECT_0);
//while(deltaAfb>delta_A);
ProjectGUI::MainForm::autoRef->BeginInvoke(ProjectGUI::MainForm::autoRef-
>updateIterationMsgDelegate,"Iteration terminated: " + nResult);
//MessageBox::Show("Iteration terminated");
return nResult;
}
namespace ProjectGUI {
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Data;
using namespace System::Drawing;
using namespace System::Data;
using namespace Microsoft::Office::Interop;
/// <summary>
/// Summary for MainForm
/// </summary>
public ref class MainForm : public System::Windows::Forms::Form
{
public:
MainForm(void)
{
InitializeComponent();
//other constructor code here
dlgPrInfo = gcnew ProjectInfoDlg();
prInfo = gcnew ProjectInformation();
dlgAbout = gcnew AboutDlg();
autoRef = this;
addListaDataDelegate = gcnew AddListData(this,
\&MainForm::AddListDataMethod);
updateDecisionMsgDelegate = gcnew UpdateDecisionMsg(this,
\&MainForm::UpdateDecisionMsgMethod);

```
updateIterationMsgDelegate = gcnew UpdateIterationMsg(this, \&MainForm::UpdateIterationMsgMethod);
\}
delegate void AddListData(int nT, double dAfb, double dVo, double dDeltaA, double dBetaGold, double dDeltaBeta, double dAfbGold, double dDeltaAfbGold, double dVoGold, double dDeltaAfbAfbG);

AddListData^ addListaDataDelegate;
delegate void UpdateDecisionMsg(String^ msg);
UpdateDecisionMsg^ updateDecisionMsgDelegate;
delegate void UpdateIterationMsg(String^ msg);
UpdateIterationMsg^ updateIterationMsgDelegate;
private: System::Windows::Forms::ColumnHeader^ columnHeader7;
public: static MainForm^ autoRef;
private: System::Windows::Forms::ColumnHeader^ columnHeader8;
private: System::Windows::Forms::ToolStripSeparator^ toolStripSeparator3;
private: System::Windows::Forms::ToolStripButton^ tsbListView;
private: System::Windows::Forms::ToolStripButton^ tsbChartView;
private: System::Windows::Forms::ToolStripSeparator^ toolStripSeparator4;
private: System::Windows::Forms::ToolStripButton^ tsbStart;
private: System::Windows::Forms::ToolStripButton^ tsbStop;
private: System::Windows::Forms::ToolStripSeparator^ toolStripSeparator5;
private: System::Windows::Forms::ToolStripButton^ tsbSettings;
private: System::Windows::Forms::Panel^ panel3;
private: System::Windows::Forms::Panel^ panel4;
private: System::Windows::Forms::Panel^ panel5;
private: System::Windows::Forms::Panel^ panel8;
private: System::Windows::Forms::Panel^ panel7;
private: System::Windows::Forms::Panel^ panel6;
private: System::Windows::Forms::ToolStripMenuItem^ startToolStripMenuItem;
private: System::Windows::Forms::ToolStripMenuItem^ stopToolStripMenuItem;
private: System::Windows::Forms::ToolStripMenuItem^ terminateToolStripMenuItem;
private: System::Windows::Forms::ColumnHeader^ columnHeader10;
private: System::Windows::Forms::ToolStripStatusLabel^ tsslbDecisionMsg;
private: System::Windows::Forms::ToolStripStatusLabel^ tsslbIterationMsg;
private: System::Windows::Forms::ColumnHeader^ columnHeader9;
protected:
/// <summary>
/// Clean up any resources being used.
/// </summary>
~MainForm()
\{ if (components)
\{
delete components;
\}
\}
private: System::Windows::Forms::StatusStrip^ statusStrip1; protected:
private: System::Windows::Forms::MenuStrip^ menuStrip1;
private: System::Windows::Forms::ToolStripMenuItem^ fileToolStripMenuItem;
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripMenuItem^ simulationToolStripMenuItem;
```

private: System::Windows::Forms::ToolStrip^ toolStrip1;
private: System::Windows::Forms::ToolStripButton^ tsbOpen;
private: System::Windows::Forms::ToolStripSeparator^ toolStripSeparator1;
private: System::Windows::Forms::SplitContainer^ splitContainer1;
private: System::Windows::Forms::TabControl^ tabControl;
private: System::Windows::Forms::TabPage^ tabList;
private: System::Windows::Forms::TabPage^ tabChart;
private: System::Windows::Forms::OpenFileDialog^ openFileDialog;
private: System::ComponentModel::IContainer^ components;
private: System::Windows::Forms::ToolStripMenuItem^ newToolStripMenuItem;
private:
/// <summary>
/// Required designer variable.
/// </summary>
ProjectInfoDlg ^dlgPrInfo;
AboutDlg^ dlgAbout;
private: System::Windows::Forms::ToolStripMenuItem^ viewToolStripMenuItem;
private: System::Windows::Forms::ToolStripMenuItem^ helpToolStripMenuItem;
private: System::Windows::Forms::ToolStripButton^ tsbNew;
private: System::Windows::Forms::ToolStripButton^ tsbSaveAs;

```
```

private: System::Windows::Forms::ToolStripMenuItem^

```
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripMenuItem^
private: System::Windows::Forms::ToolStripSeparator^
private: System::Windows::Forms::ToolStripSeparator^
private: System::Windows::Forms::ToolStripMenuItem^ settingsToolStripMenuItem;
private: System::Windows::Forms::ToolStripMenuItem^ settingsToolStripMenuItem;
private: System::Windows::Forms::ToolStripMenuItem^ aboutToolStripMenuItem;
private: System::Windows::Forms::ToolStripMenuItem^ aboutToolStripMenuItem;
private: System::Windows::Forms::TabPage^ tabDetails;
private: System::Windows::Forms::TabPage^ tabDetails;
private: System::Windows::Forms::DataVisualization::Charting::Chart^ chartView;
private: System::Windows::Forms::DataVisualization::Charting::Chart^ chartView;
private: System::Windows::Forms::GroupBox^ groupBox1;
private: System::Windows::Forms::GroupBox^ groupBox1;
private: System::Windows::Forms::TextBox^ tbDeltaTDescription;
private: System::Windows::Forms::TextBox^ tbDeltaTDescription;
private: System::Windows::Forms::Label^ label9;
private: System::Windows::Forms::Label^ label9;
private: System::Windows::Forms::TextBox^ tbBetaDescription;
private: System::Windows::Forms::TextBox^ tbBetaDescription;
private: System::Windows::Forms::Label^ label8
private: System::Windows::Forms::Label^ label8
private: System::Windows::Forms::TextBox^ tbAmplificationDescription;
private: System::Windows::Forms::TextBox^ tbAmplificationDescription;
private: System::Windows::Forms::Label^ label7;
private: System::Windows::Forms::Label^ label7;
private: System::Windows::Forms::Label^ label6;
private: System::Windows::Forms::Label^ label6;
private: System::Windows::Forms::TextBox^ tbOutputDescription;
private: System::Windows::Forms::TextBox^ tbOutputDescription;
private: System::Windows::Forms::Label^ label5;
private: System::Windows::Forms::Label^ label5;
private: System::Windows::Forms::TextBox^ tbInputDescription;
private: System::Windows::Forms::TextBox^ tbInputDescription;
private: System::Windows::Forms::TextBox^ tbPrDescription;
private: System::Windows::Forms::TextBox^ tbPrDescription;
private: System::Windows::Forms::Label^ label2;
private: System::Windows::Forms::Label^ label2;
private: System::Windows::Forms::Label^ label4;
private: System::Windows::Forms::Label^ label4;
private: System::Windows::Forms::Label^ label3;
private: System::Windows::Forms::Label^ label3;
private: System::Windows::Forms::Label^ label1;
private: System::Windows::Forms::Label^ label1;
private: System::Windows::Forms::TextBox^ tbPrName;
private: System::Windows::Forms::TextBox^ tbPrName;
private: System::Windows::Forms::ComboBox^ cbPrType;
private: System::Windows::Forms::ComboBox^ cbPrType;
private: System::Windows::Forms::DateTimePicker^ dtPrDate;
private: System::Windows::Forms::DateTimePicker^ dtPrDate;
private: System::Windows::Forms::ListView^ listView;
private: System::Windows::Forms::ListView^ listView;
private: System::Windows::Forms::ColumnHeader^ columnHeader1;
private: System::Windows::Forms::ColumnHeader^ columnHeader1;
private: System::Windows::Forms::ColumnHeader^ columnHeader2;
private: System::Windows::Forms::ColumnHeader^ columnHeader2;
private: System::Windows::Forms::ColumnHeader^ columnHeader3;
private: System::Windows::Forms::ColumnHeader^ columnHeader3;
private: System::Windows::Forms::SaveFileDialog^ saveFileDialog;
private: System::Windows::Forms::SaveFileDialog^ saveFileDialog;
private: System::Windows::Forms::Panel^ panel1;
private: System::Windows::Forms::Panel^ panel1;
private: System::Windows::Forms::Panel^ panel2;
```

private: System::Windows::Forms::Panel^ panel2;

```
```

private: System::Windows::Forms::Label^ label10;
private: System::Windows::Forms::Label^ lbOutput;
private: System::Windows::Forms::Label^ lbAfb;
private: System::Windows::Forms::Label^ lbInput;
private: System::Windows::Forms::Label^ lbBetaFeedback;
private: System::Windows::Forms::Label^ lbAmplifier;
private: System::Windows::Forms::ColumnHeader^ columnHeader4;
private: System::Windows::Forms::ColumnHeader^ columnHeader5;
private: System::Windows::Forms::ColumnHeader^ columnHeader6;
private: System::Windows::Forms::Button^ btStop;
private: System::Windows::Forms::Button^ btStart;
private: Dotnetrix::Controls::TrackBar^ trbAmplification;
private: Dotnetrix::Controls::TrackBar^ trbBeta;
private: Dotnetrix::Controls::TrackBar^ trbDeltaT;
private: Dotnetrix::Controls::TrackBar^ trbVii;
private: Dotnetrix::Controls::TrackBar^ trbDIU;
private: Dotnetrix::Controls::TrackBar^ trbDeltaA;
private: System::Windows::Forms::TextBox^ tbDIUVal;
private: System::Windows::Forms::TextBox^ tbViiVal;
private: System::Windows::Forms::TextBox^ tbDeltaAVal;
private: System::Windows::Forms::TextBox^ tbDeltaTVal;
private: System::Windows::Forms::TextBox^ tbBetaVal;
private: System::Windows::Forms::TextBox^ tbAVal;
private: ProjectInformation ^prInfo;

```
\#pragma region Windows Form Designer generated code
        /// <summary>
        /// Required method for Designer support - do not modify
        /// the contents of this method with the code editor.
        /// </summary>
        void InitializeComponent(void)
        \{

System::ComponentModel::ComponentResourceManager^ resources =
(gcnew System::ComponentModel::ComponentResourceManager(MainForm::typeid));
System::Windows::Forms::DataVisualization::Charting::ChartArea^
chartArea1 = (gcnew System: :Windows::Forms::DataVisualization::Charting: ChartArea());
System: :Windows::Forms::DataVisualization::Charting: :Legend^
legend1 = (gcnew System::Windows::Forms::DataVisualization::Charting::Legend());
System: :Windows::Forms::DataVisualization::Charting::Series^
series1 = (gcnew System::Windows::Forms::DataVisualization::Charting::Series());
System: :Windows::Forms::DataVisualization::Charting::Series^
series2 = (gcnew System::Windows::Forms::DataVisualization::Charting::Series());
System: :Windows::Forms::DataVisualization::Charting: :Series^
series3 = (gcnew System::Windows::Forms::DataVisualization::Charting::Series());
this->statusStrip1 = (gcnew
System::Windows::Forms::StatusStrip());
this->tsslbDecisionMsg = (gcnew
System::Windows::Forms::ToolStripStatusLabel());
this->tsslbIterationMsg \(=\) (gcnew
System::Windows::Forms::ToolStripStatusLabel());
this->menuStrip1 = (gcnew System::Windows::Forms::MenuStrip());
this->fileToolStripMenuItem = (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->newToolStripMenuItem = (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->openToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->saveAsToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->toolStripSeparator1 \(=\) (gcnew
System::Windows::Forms::ToolStripSeparator());
this->exitToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->viewToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->dataListToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->dataChartToolStripMenuItem = (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->detailsToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->toolStripSeparator2 \(=\) (gcnew
System::Windows::Forms::ToolStripSeparator()); this->settingsToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->simulationToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->startToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->stopToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->terminateToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem()); this->helpToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->aboutToolStripMenuItem \(=\) (gcnew
System::Windows::Forms::ToolStripMenuItem());
this->toolStrip1 = (gcnew System::Windows::Forms::ToolStrip()); this->tsbNew \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->tsbOpen \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->tsbSaveAs \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->toolStripSeparator3 \(=\) (gcnew
System::Windows::Forms::ToolStripSeparator()); this->tsbListView \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->tsbChartView \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->toolStripSeparator4 \(=\) (gcnew
System::Windows::Forms::ToolStripSeparator()); this->tsbStart \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->tsbStop \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->toolStripSeparator5 \(=\) (gcnew
System::Windows::Forms::ToolStripSeparator());
this->tsbSettings \(=\) (gcnew
System::Windows::Forms::ToolStripButton()); this->splitContainer1 \(=\) (genew
System::Windows::Forms::SplitContainer()); this->panel1 = (gcnew System::Windows::Forms::Panel()); this->lbOutput = (gcnew System::Windows::Forms::Label()); this->lbAfb = (gcnew System::Windows::Forms::Label()); this->lbInput = (gcnew System::Windows::Forms::Label()); this->lbBetaFeedback = (gcnew System::Windows::Forms::Label()); this->lbAmplifier = (gcnew System::Windows::Forms::Label());
```

 this->tabControl = (gcnew
 System::Windows::Forms::TabControl());
this->tabList = (gcnew System::Windows::Forms::TabPage());
this->listView = (gcnew System::Windows::Forms::ListView());
this->columnHeader1 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader2 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader3 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader4 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader5 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader6 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader7 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader8 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader9 = (gcnew
System::Windows::Forms::ColumnHeader());
this->columnHeader10 = (gcnew
System::Windows::Forms::ColumnHeader());
this->tabChart = (gcnew System::Windows::Forms::TabPage());
this->chartView = (gcnew
System::Windows::Forms::DataVisualization::Charting::Chart());
this->tabDetails = (gcnew System::Windows::Forms::TabPage());
this->label4 = (gcnew System::Windows::Forms::Label());
this->label3 = (gcnew System::Windows::Forms::Label());
this->label1 = (gcnew System::Windows::Forms::Label());
this->tbPrName = (gcnew System::Windows::Forms::TextBox());
this->cbPrType = (gcnew System::Windows::Forms::ComboBox());
this->dtPrDate = (gcnew
System::Windows::Forms::DateTimePicker());
this->groupBox1 = (gcnew System::Windows::Forms::GroupBox());
this->tbDeltaTDescription = (gcnew
System::Windows::Forms::TextBox());
this->label9 = (gcnew System::Windows::Forms::Label());
this->tbBetaDescription = (gcnew
System::Windows::Forms::TextBox());
this->label8 = (gcnew System::Windows::Forms::Label());
this->tbAmplificationDescription = (gcnew
System::Windows::Forms::TextBox());
this->label7 = (gcnew System::Windows::Forms::Label());
this->label6 = (gcnew System::Windows::Forms::Label());
this->tbOutputDescription = (gcnew
System::Windows::Forms::TextBox());
this->label5 = (gcnew System::Windows::Forms::Label());
this->tbInputDescription = (gcnew
System::Windows::Forms::TextBox());
this->tbPrDescription = (gcnew
System::Windows::Forms::TextBox());
this->label2 = (gcnew System::Windows::Forms::Label());
this->panel8 = (gcnew System::Windows::Forms::Panel());
this->trbVii = (gcnew Dotnetrix::Controls::TrackBar());
this->tbViiVal = (gcnew System::Windows::Forms::TextBox());
this->panel7 = (gcnew System::Windows::Forms::Panel());
this->trbDIU = (gcnew Dotnetrix::Controls::TrackBar());
this->tbDIUVal = (gcnew System::Windows::Forms::TextBox());
this->panel6 = (gcnew System::Windows::Forms::Panel());
this->trbDeltaA = (gcnew Dotnetrix::Controls::TrackBar());

```
this->tbDeltaAVal = (gcnew System::Windows::Forms::TextBox()); this->panel5 = (gcnew System::Windows::Forms::Panel()); this->trbDeltaT = (gcnew Dotnetrix::Controls::TrackBar()); this->tbDeltaTVal = (gcnew System::Windows::Forms::TextBox()); this->panel4 = (gcnew System::Windows::Forms::Panel()); this->trbBeta = (gcnew Dotnetrix: :Controls::TrackBar()); this->tbBetaVal = (gcnew System::Windows::Forms::TextBox()); this->panel3 = (gcnew System::Windows::Forms::Panel()); this->trbAmplification = (gcnew
Dotnetrix::Controls::TrackBar());
this->tbAVal = (gcnew System::Windows::Forms::TextBox());
this->btStop = (gcnew System::Windows::Forms::Button());
this->btStart = (gcnew System::Windows::Forms::Button());
this->panel2 = (gcnew System::Windows::Forms::Panel());
this->label10 = (gcnew System::Windows::Forms::Label());
this->openFileDialog = (gcnew
System::Windows::Forms::OpenFileDialog());
this->saveFileDialog = (gcnew
System::Windows::Forms::SaveFileDialog());
this->statusStrip1->SuspendLayout();
this->menuStrip1->SuspendLayout();
this->toolStrip1->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->splitContainer1))->BeginInit();
this->splitContainer1->Panel1->SuspendLayout();
this->splitContainer1->Panel2->SuspendLayout();
this->splitContainer1->SuspendLayout();
this->panel1->SuspendLayout();
this->tabControl->SuspendLayout();
this->tabList->SuspendLayout();
this->tabChart->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->chartView))->BeginInit();
this->tabDetails->SuspendLayout();
this->groupBox1->SuspendLayout();
this->panel8->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbVii))->BeginInit();
this->panel7->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbDIU))->BeginInit();
this->panel6->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbDeltaA))->BeginInit();
this->panel5->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbDeltaT))->BeginInit();
this->panel4->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbBeta))->BeginInit();
this->panel3->SuspendLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbAmplification))->BeginInit();
this->panel2->SuspendLayout();
this->SuspendLayout();
//
// statusStrip1
//
this->statusStrip1->Items->AddRange(gcnew cli::array<
System::Windows::Forms::ToolStripItem^ >(2) \{this->tsslbDecisionMsg,
this->tsslbIterationMsg\});
this->statusStrip1->Location = System::Drawing::Point(0, 584);
```

 this->statusStrip1->Name = L"statusStrip1";
 this->statusStrip1->Size = System::Drawing::Size(890, 22);
 this->statusStrip1->TabIndex = 0;
 this->statusStrip1->Text = L"statusStrip1";
 //
 // tsslbDecisionMsg
 //
 this->tsslbDecisionMsg->Name = L"tsslbDecisionMsg";
 this->tsslbDecisionMsg->Size = System::Drawing::Size(0, 17);
 //
 // tsslbIterationMsg
 //
 this->tsslbIterationMsg->Name = L"tsslbIterationMsg";
 this->tsslbIterationMsg->Size = System::Drawing::Size(0, 17);
 //
 // menuStrip1
 //
 this->menuStrip1->Items->AddRange(gcnew cli::array<
 System::Windows::Forms::ToolStripItem^ >(4) {this->fileToolStripMenuItem,
this->viewToolStripMenuItem, this-
>simulationToolStripMenuItem, this->helpToolStripMenuItem});
this->menuStrip1->Location = System::Drawing::Point(0, 0);
this->menuStrip1->Name = L"menuStrip1";
this->menuStrip1->Size = System::Drawing::Size(890, 24);
this->menuStrip1->TabIndex = 1;
this->menuStrip1->Text = L"menuStrip1";
//
// fileToolStripMenuItem
//
this->fileToolStripMenuItem->DropDownItems->AddRange(gcnew
cli::array< System::Windows::Forms::ToolStripItem^ >(5) {this->newToolStripMenuItem,
this->openToolStripMenuItem, this-
>saveAsToolStripMenuItem, this->toolStripSeparator1, this->exitToolStripMenuItem});
this->fileToolStripMenuItem->Name = L"fileToolStripMenuItem";
this->fileToolStripMenuItem->Size = System::Drawing::Size(37,
20);
this->fileToolStripMenuItem->Text = L"\&File";
//
// newToolStripMenuItem
//
this->newToolStripMenuItem->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"newToolStripMenuItem.Image")));
this->newToolStripMenuItem->Name = L"newToolStripMenuItem";
this->newToolStripMenuItem->ShortcutKeys =
static_castSystem::Windows::Forms::Keys((System::Windows::Forms::Keys::Control |
System::Windows::Forms::Keys::N));
this->newToolStripMenuItem->Size = System::Drawing::Size(161,
22);
this->newToolStripMenuItem->Text = L"\&New...";
this->newToolStripMenuItem->Click += gcnew
System::EventHandler(this, \&MainForm::newToolStripMenuItem_Click);
//
// openToolStripMenuItem
//
this->openToolStripMenuItem->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"openToolStripMenuItem.Image")));
this->openToolStripMenuItem->Name = L"openToolStripMenuItem";
this->openToolStripMenuItem->ShortcutKeys =
static_castSystem::Windows::Forms::Keys((System::Windows::Forms::Keys::Control |
System::Windows::Forms::Keys::0));

```
```

22);
this->openToolStripMenuItem->Text = L"\&Open...";
this->openToolStripMenuItem->Click += gcnew
System::EventHandler(this, \&MainForm::openToolStripMenuItem_Click);
//
// saveAsToolStripMenuItem
//
this->saveAsToolStripMenuItem->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"saveAsToolStripMenuItem.Image")));
this->saveAsToolStripMenuItem->Name =
L"saveAsToolStripMenuItem";
this->saveAsToolStripMenuItem->ShortcutKeys =
static_castSystem::Windows::Forms::Keys((System::Windows::Forms::Keys::Control |
System::Windows::Forms::Keys::S));
this->saveAsToolStripMenuItem->Size =
System::Drawing::Size(161, 22);
this->saveAsToolStripMenuItem->Text = L"\&Save as...";
this->saveAsToolStripMenuItem->Click += gcnew
System::EventHandler(this, \&MainForm::saveAsToolStripMenuItem_Click);
//
// toolStripSeparator1
//
this->toolStripSeparator1->Name = L"toolStripSeparator1";
this->toolStripSeparator1->Size = System::Drawing::Size(158,
6);
//
// exitToolStripMenuItem
//
this->exitToolStripMenuItem->Name = L"exitToolStripMenuItem";
this->exitToolStripMenuItem->ShortcutKeys =
static_castSystem::Windows::Forms::Keys((System::Windows::Forms::Keys::Alt |
System::Windows::Forms::Keys::X));
this->exitToolStripMenuItem->Size = System::Drawing::Size(161,
22);
this->exitToolStripMenuItem->Text = L"E\&xit";
this->exitToolStripMenuItem->Click += gcnew
System::EventHandler(this, \&MainForm::exitToolStripMenuItem_Click);
//
// viewToolStripMenuItem
//
this->viewToolStripMenuItem->DropDownItems->AddRange(gcnew
cli::array< System::Windows::Forms::ToolStripItem^ >(5) {this->dataListToolStripMenuItem,
this->dataChartToolStripMenuItem, this-
>detailsToolStripMenuItem, this->toolStripSeparator2, this->settingsToolStripMenuItem});
this->viewToolStripMenuItem->Name = L"viewToolStripMenuItem";
this->viewToolStripMenuItem->Size = System::Drawing::Size(44,
20);
this->viewToolStripMenuItem->Text = L"\&View";
//
// dataListToolStripMenuItem
//
this->dataListToolStripMenuItem->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"dataListToolStripMenuItem.Image")));
this->dataListToolStripMenuItem->Name =
L"dataListToolStripMenuItem";
this->dataListToolStripMenuItem->Size =
System::Drawing::Size(130, 22);
this->dataListToolStripMenuItem->Text = L"Data List";

```
this->dataListToolStripMenuItem->Click += gcnew
System::EventHandler(this, \&MainForm::dataListToolStripMenuItem_Click); //
// dataChartToolStripMenuItem
//
this->dataChartToolStripMenuItem->Image \(=\)
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"dataChartToolStripMenuItem.Image")));
this->dataChartToolStripMenuItem->Name \(=\)
L"dataChartToolStripMenuItem";
this->dataChartToolStripMenuItem->Size =
System::Drawing::Size(130, 22);
this->dataChartToolStripMenuItem->Text = L"Data Chart"; this->dataChartToolStripMenuItem->Click += gcnew
System::EventHandler(this, \&MainForm::dataChartToolStripMenuItem_Click);
//
// detailsToolStripMenuItem
// this->detailsToolStripMenuItem->Name =
L"detailsToolStripMenuItem";
this->detailsToolStripMenuItem->Size =
System::Drawing::Size(130, 22);
this->detailsToolStripMenuItem->Text = L"Details"; this->detailsToolStripMenuItem->Click += gcnew
System::EventHandler(this, \&MainForm::detailsToolStripMenuItem_Click);
//
// toolStripSeparator2
//
this->toolStripSeparator2->Name = L"toolStripSeparator2"; this->toolStripSeparator2->Size = System::Drawing::Size(127,
6) ;
//
// settingsToolStripMenuItem
//
this->settingsToolStripMenuItem->Image \(=\)
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"settingsToolStripMenuItem.Image"))); this->settingsToolStripMenuItem->Name =
L"settingsToolStripMenuItem";
this->settingsToolStripMenuItem->Size =
System::Drawing::Size(130, 22);
this->settingsToolStripMenuItem->Text = L"Settings";
//
// simulationToolStripMenuItem
//
this->simulationToolStripMenuItem->DropDownItems-
>AddRange(gcnew cli::array< System::Windows::Forms::ToolStripItem^ >(3) \{this>startToolStripMenuItem,
this->stopToolStripMenuItem, this-
>terminateToolStripMenuItem\});
this->simulationToolStripMenuItem->Name =
L"simulationToolStripMenuItem"; this->simulationToolStripMenuItem->Size =
System::Drawing::Size(76, 20);
this->simulationToolStripMenuItem->Text = L"\&Simulation";
//
// startToolStripMenuItem
//
this->startToolStripMenuItem->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources>GetObject(L"startToolStripMenuItem.Image")));
this->startToolStripMenuItem->Name = L"startToolStripMenuItem";

//
this->tsbNew->DisplayStyle =
System::Windows::Forms::ToolStripItemDisplayStyle::Image;
this->tsbNew->Image = (cli::safe_cast<System::Drawing::Image^
>(resources->GetObject(L"tsbNew.Image")));
this->tsbNew->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling::None;
this->tsbNew->ImageTransparentColor =
System: :Drawing::Color::Magenta;
this->tsbNew->Name = L"tsbNew";
this->tsbNew->Size = System::Drawing::Size(36, 36);
this->tsbNew->Text = L"New";
this->tsbNew->Click += gcnew System: :EventHandler(this,
\&MainForm::tsbNew_Click);
```

 //
 // tsbOpen
 //
 this->tsbOpen->DisplayStyle =
    ```

System::Windows::Forms::ToolStripItemDisplayStyle::Image;
this->tsbOpen->Image = (cli::safe_cast<System::Drawing::Image^
>(resources->GetObject(L"tsbOpen.Image")));
this->tsbOpen->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling::None;
this->tsbOpen->ImageTransparentColor \(=\)
System::Drawing::Color::Magenta;
this->tsbOpen->Name = L"tsbOpen";
this->tsbOpen->Size = System::Drawing::Size(36, 36);
this->tsbOpen->Text = L"Open";
this->tsbOpen->Click += gcnew System::EventHandler(this,
\&MainForm::tsbOpen_Click);
//
// tsbSaveAs
//
this->tsbSaveAs->DisplayStyle =
System::Windows::Forms::ToolStripItemDisplayStyle::Image;
this->tsbSaveAs->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources->GetObject(L"tsbSaveAs.Image")));
this->tsbSaveAs->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling::None;
this->tsbSaveAs->ImageTransparentColor =
System: :Drawing::Color::Magenta;
this->tsbSaveAs->Name = L"tsbSaveAs";
this->tsbSaveAs->Size = System::Drawing::Size(36, 36);
this->tsbSaveAs->Text = L"Save as";
//
// toolStripSeparator3
//
this->toolStripSeparator3->Name = L"toolStripSeparator3";
this->toolStripSeparator3->Size = System::Drawing::Size(6, 39);
//
// tsbListView
//
this->tsbListView->DisplayStyle =
System::Windows::Forms::ToolStripItemDisplayStyle::Image;
this->tsbListView->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources->GetObject(L"tsbListView.Image")));
this->tsbListView->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling: :None;
this->tsbListView->ImageTransparentColor \(=\)
System::Drawing::Color::Magenta;
this->tsbListView->Name = L"tsbListView";
this->tsbListView->Size = System::Drawing::Size(36, 36);
```

this->tsbListView->Text = L"ListView";
//
// tsbChartView
//
this->tsbChartView->DisplayStyle =
System::Windows::Forms::ToolStripItemDisplayStyle::Image;
this->tsbChartView->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources->GetObject(L"tsbChartView.Image")));
this->tsbChartView->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling::None;
this->tsbChartView->ImageTransparentColor =
System::Drawing::Color::Magenta;
this->tsbChartView->Name = L"tsbChartView";
this->tsbChartView->Size = System::Drawing::Size(36, 36);
this->tsbChartView->Text = L"ChartView";
//
// toolStripSeparator4
//
this->toolStripSeparator4->Name = L"toolStripSeparator4";
this->toolStripSeparator4->Size = System::Drawing::Size(6, 39);
//
// tsbStart
//
this->tsbStart->DisplayStyle =
System::Windows::Forms::ToolStripItemDisplayStyle::Image;
this->tsbStart->Image = (cli::safe_cast<System::Drawing::Image^
>(resources->GetObject(L"tsbStart.Image")));
this->tsbStart->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling::None;
this->tsbStart->ImageTransparentColor =
System::Drawing::Color::Magenta;
this->tsbStart->Name = L"tsbStart";
this->tsbStart->Size = System::Drawing::Size(36, 36);
this->tsbStart->Text = L"Start";
this->tsbStart->Click += gcnew System::EventHandler(this,
\&MainForm::tsbStart_Click);
//
// tsbStop
//
this->tsbStop->DisplayStyle =
System::Windows::Forms::ToolStripItemDisplayStyle::Image;
this->tsbStop->Image = (cli::safe_cast<System::Drawing::Image^
>(resources->GetObject(L"tsbStop.Image")));
this->tsbStop->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling::None;
this->tsbStop->ImageTransparentColor =
System::Drawing::Color::Magenta;
this->tsbStop->Name = L"tsbStop";
this->tsbStop->Size = System::Drawing::Size(36, 36);
this->tsbStop->Text = L"Stop";
this->tsbStop->Click += gcnew System::EventHandler(this,
\&MainForm::tsbStop_Click);

```
```

//

```
//
// toolStripSeparator5
// toolStripSeparator5
//
//
this->toolStripSeparator5->Name = L"toolStripSeparator5";
this->toolStripSeparator5->Name = L"toolStripSeparator5";
this->toolStripSeparator5->Size = System::Drawing::Size(6, 39);
this->toolStripSeparator5->Size = System::Drawing::Size(6, 39);
//
//
// tsbSettings
// tsbSettings
//
//
this->tsbSettings->DisplayStyle =
this->tsbSettings->DisplayStyle =
System::Windows::Forms::ToolStripItemDisplayStyle::Image;
```

this->tsbSettings->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources->GetObject(L"tsbSettings.Image"))); this->tsbSettings->ImageScaling =
System::Windows::Forms::ToolStripItemImageScaling::None; this->tsbSettings->ImageTransparentColor =
System::Drawing: :Color::Magenta;
this->tsbSettings->Name = L"tsbSettings";
this->tsbSettings->Size = System::Drawing::Size(36, 36);
this->tsbSettings->Text = L"Settings";
//
// splitContainer1
//
this->splitContainer1->Dock =
System::Windows::Forms::DockStyle::Fill;
this->splitContainer1->Location = System: :Drawing::Point(0,
63);
this->splitContainer1->Name = L"splitContainer1";
//
// splitContainer1.Panel1
//
this->splitContainer1->Panel1->BackColor $=$
System::Drawing::SystemColors::Control;
this->splitContainer1->Panel1->Controls->Add(this->panel1);
this->splitContainer1->Panel1->Controls->Add(this->tabControl); //
// splitContainer1.Panel2
//
this->splitContainer1->Panel2->BackColor =
System::Drawing::SystemColors::ControlLight;
this->splitContainer1->Panel2->Controls->Add(this->panel8);
this->splitContainer1->Panel2->Controls->Add(this->panel7);
this->splitContainer1->Panel2->Controls->Add(this->panel6);
this->splitContainer1->Panel2->Controls->Add(this->panel5);
this->splitContainer1->Panel2->Controls->Add(this->panel4);
this->splitContainer1->Panel2->Controls->Add(this->panel3);
this->splitContainer1->Panel2->Controls->Add(this->btStop);
this->splitContainer1->Panel2->Controls->Add(this->btStart);
this->splitContainer1->Panel2->Controls->Add(this->panel2);
this->splitContainer1->Size = System::Drawing::Size(890, 521);
this->splitContainer1->SplitterDistance = 573;
this->splitContainer1->TabIndex $=3$;
//
// panel1
//
this->panel1->BackgroundImage $=$
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel1.BackgroundImage")));
this->panel1->BackgroundImageLayout $=$
System::Windows::Forms::ImageLayout::Zoom;
this->panel1->Controls->Add(this->lbOutput);
this->panel1->Controls->Add(this->lbAfb);
this->panel1->Controls->Add(this->lbInput);
this->panel1->Controls->Add(this->lbBetaFeedback);
this->panel1->Controls->Add(this->lbAmplifier);
this->panel1->Location = System::Drawing::Point(12, 12);
this->panel1->Name = L"panel1";
this->panel1->Size = System::Drawing::Size(553, 156);
this->panel1->TabIndex $=2$;
//
// lbOutput
//
this->lbOutput->AutoSize = true;
this->lbOutput->BackColor = System::Drawing::Color::White; this->lbOutput->Font = (gcnew System::Drawing::Font(L"Microsoft
Sans Serif", 12, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point, static_castSystem::Byte(0)));
this->lbOutput->Location = System::Drawing::Point(409, 26);
this->lbOutput->Name = L"lbOutput";
this->lbOutput->Size = System::Drawing::Size(84, 20);
this->lbOutput->TabIndex = 6;
this->lbOutput->Text = L"Output = ";
//
// lbAfb
//
this->lbAfb->AutoSize = true;
this->lbAfb->BackColor = System::Drawing::Color::White; this->lbAfb->Font = (gcnew System::Drawing::Font(L"Microsoft
Sans Serif", 12, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point, static_castSystem::Byte(0)));
this->lbAfb->Location = System::Drawing::Point(419, 90);
this->lbAfb->Name = L"lbAfb";
this->lbAfb->Size = System::Drawing::Size(57, 20);
this->lbAfb->TabIndex = 5;
this->lbAfb->Text = L"Afb = ";
//
// lbInput
//
this->lbInput->AutoSize = true;
this->lbInput->BackColor = System::Drawing::Color::White; this->lbInput->Font = (gcnew System::Drawing::Font(L"Microsoft
Sans Serif", 12, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point, static_castSystem::Byte(0)));
this->lbInput->Location = System::Drawing::Point(27, 26);
this->lbInput->Name = L"lbInput";
this->lbInput->Size = System::Drawing::Size(71, 20);
this->lbInput->TabIndex = 4;
this->lbInput->Text $=$ L"Input $=$ ";
//
// lbBetaFeedback
//
this->lbBetaFeedback->AutoSize = true;
this->lbBetaFeedback->BackColor $=$
System::Drawing::Color::White;
this->lbBetaFeedback->Font = (gcnew
System::Drawing::Font(L"Microsoft Sans Serif", 12, System::Drawing::FontStyle::Bold,
System::Drawing::GraphicsUnit::Point,
static_cast<System: :Byte>(0)));
this->lbBetaFeedback->Location = System::Drawing::Point(236,
117);
this->lbBetaFeedback->Name = L"lbBetaFeedback";
this->lbBetaFeedback->Size = System::Drawing::Size(67, 20);
this->lbBetaFeedback->TabIndex = 3;
this->lbBetaFeedback->Text $=$ L"Beta $=$ ";
//
// lbAmplifier
//
this->lbAmplifier->AutoSize = true;
this->lbAmplifier->BackColor = System::Drawing::Color::White;
this->lbAmplifier->Font = (gcnew
System::Drawing::Font(L"Microsoft Sans Serif", 12, System::Drawing::FontStyle::Bold,
System::Drawing::GraphicsUnit::Point,
static_castSystem::Byte(0)));
this->lbAmplifier->Location = System::Drawing::Point(236, 37); this->lbAmplifier->Name = L"lbAmplifier";

```
this->lbAmplifier->Size = System::Drawing::Size(41, 20);
this->lbAmplifier->TabIndex = 2;
this->lbAmplifier->Text = L"A = ";
//
// tabControl
//
this->tabControl->Controls->Add(this->tabList);
this->tabControl->Controls->Add(this->tabChart);
this->tabControl->Controls->Add(this->tabDetails);
this->tabControl->Location = System::Drawing::Point(12, 169);
this->tabControl->Name = L"tabControl";
this->tabControl->SelectedIndex = 0;
this->tabControl->Size = System::Drawing::Size(557, 348);
this->tabControl->TabIndex = 0;
//
// tabList
//
this->tabList->Controls->Add(this->listView);
this->tabList->Location = System::Drawing::Point(4, 22);
this->tabList->Name = L"tabList";
this->tabList->Padding = System::Windows::Forms::Padding(3);
this->tabList->Size = System::Drawing::Size(549, 322);
this->tabList->TabIndex = 0;
this->tabList->Text = L"List View";
this->tabList->UseVisualStyleBackColor = true;
//
// listView
//
this->listView->BorderStyle =
System::Windows::Forms::BorderStyle::FixedSingle;
this->listView->Columns->AddRange(gcnew cli::array<
System::Windows::Forms::ColumnHeader^ >(10) \{this->columnHeader1, this->columnHeader2, this->columnHeader3, this->columnHeader4, this-
>columnHeader5, this->columnHeader6, this->columnHeader7, this->columnHeader8, this->columnHeader9, this->columnHeader10\});
this->listView->Font = (gcnew System::Drawing::Font(L"Microsoft
Sans Serif", 10, System::Drawing::FontStyle::Regular, System::Drawing::GraphicsUnit::Point, static_cast<System: :Byte>(0)));
this->listView->GridLines = true; this->listView->HeaderStyle =
System::Windows::Forms::ColumnHeaderStyle::Nonclickable;
this->listView->Location = System::Drawing::Point(6, 6);
this->listView->Name = L"listView";
this->listView->Size = System::Drawing::Size(537, 310);
this->listView->TabIndex = 0;
this->listView->UseCompatibleStateImageBehavior = false;
this->listView->View = System::Windows::Forms::View::Details;
//
// columnHeader1
//
this->columnHeader1->Text = L"t";
this->columnHeader1->Width \(=33\);
//
// columnHeader2
//
this->columnHeader2->Text = L"Afb";
this->columnHeader2->Width = 73;
//
// columnHeader3
//
this->columnHeader3->Text = L"Output";
this->columnHeader3->Width \(=85\);
```

```
//
// columnHeader4
//
this->columnHeader4->Text = L"DeltaA";
this->columnHeader4->Width = 81;
//
// columnHeader5
//
this->columnHeader5->Text = L"BetaGoldR";
this->columnHeader5->Width = 81;
//
// columnHeader6
//
this->columnHeader6->Text = L"DeltaBeta";
this->columnHeader6->Width = 78;
//
// columnHeader7
//
this->columnHeader7->Text = L"AfbGoldR";
this->columnHeader7->Width = 73;
//
// columnHeader8
//
this->columnHeader8->Text = L"DeltaAfbGoldR";
//
// columnHeader9
//
this->columnHeader9->Text = L"OutputGoldR";
//
// columnHeader10
//
this->columnHeader10->Text = L"DeltaAfbAfbG";
//
// tabChart
//
this->tabChart->Controls->Add(this->chartView);
this->tabChart->Location = System::Drawing::Point(4, 22);
this->tabChart->Name = L"tabChart";
this->tabChart->Padding = System::Windows::Forms::Padding(3);
this->tabChart->Size = System::Drawing::Size(549, 322);
this->tabChart->TabIndex = 1;
this->tabChart->Text = L"Chart View";
this->tabChart->UseVisualStyleBackColor = true;
//
// chartView
//
this->chartView->BorderlineDashStyle =
System::Windows::Forms::DataVisualization::Charting::ChartDashStyle::Dot;
chartArea1->Name = L"ChartArea1";
this->chartView->ChartAreas->Add(chartArea1);
legend1->Name = L"Legend1";
this->chartView->Legends->Add(legend1);
this->chartView->Location = System::Drawing::Point(0, 3);
this->chartView->Name = L"chartView";
this->chartView->Palette =
System::Windows::Forms::DataVisualization::Charting::ChartColorPalette::Bright;
series1->ChartArea = L"ChartArea1";
series1->CustomProperties = L"DrawingStyle=Cylinder";
series1->Legend = L"Legend1";
series1->Name = L"Afb";
series2->ChartArea = L"ChartArea1";
series2->CustomProperties = L"DrawingStyle=Cylinder";
```

```
series2->Legend = L"Legend1";
series2->Name = L"Vo";
series3->ChartArea = L"ChartArea1";
series3->CustomProperties = L"DrawingStyle=Cylinder";
series3->Legend = L"Legend1";
series3->Name = L"AfbGold";
this->chartView->Series->Add(series1);
this->chartView->Series->Add(series2);
this->chartView->Series->Add(series3);
this->chartView->Size = System::Drawing::Size(546, 313);
this->chartView->TabIndex = 0;
this->chartView->Text = L"chart1";
//
// tabDetails
//
this->tabDetails->Controls->Add(this->label4);
this->tabDetails->Controls->Add(this->label3);
this->tabDetails->Controls->Add(this->label1);
this->tabDetails->Controls->Add(this->tbPrName);
this->tabDetails->Controls->Add(this->cbPrType);
this->tabDetails->Controls->Add(this->dtPrDate);
this->tabDetails->Controls->Add(this->groupBox1);
this->tabDetails->Location = System::Drawing::Point(4, 22);
this->tabDetails->Name = L"tabDetails";
this->tabDetails->Padding = System::Windows::Forms::Padding(3);
this->tabDetails->Size = System::Drawing::Size(549, 322);
this->tabDetails->TabIndex = 2;
this->tabDetails->Text = L"Details";
this->tabDetails->UseVisualStyleBackColor = true;
//
// label4
//
this->label4->AutoSize = true;
this->label4->Location = System::Drawing::Point(13, 287);
this->label4->Name = L"label4";
this->label4->Size = System::Drawing::Size(66, 13);
this->label4->TabIndex = 20;
this->label4->Text = L"Project type:";
//
// label3
//
this->label3->AutoSize = true;
this->label3->Location = System::Drawing::Point(229, 287);
this->label3->Name = L"label3";
this->label3->Size = System::Drawing::Size(68, 13);
this->label3->TabIndex = 19;
this->label3->Text = L"Current date:";
//
// label1
//
this->label1->AutoSize = true;
this->label1->Location = System::Drawing::Point(13, 255);
this->label1->Name = L"label1";
this->label1->Size = System::Drawing::Size(72, 13);
this->label1->TabIndex = 18;
this->label1->Text = L"Project name:";
//
// tbPrName
//
this->tbPrName->Location = System::Drawing::Point(104, 252);
this->tbPrName->Name = L"tbPrName";
this->tbPrName->Size = System::Drawing::Size(381, 20);
```

```
this->tbPrName->TabIndex = 17;
//
// cbPrType
//
this->cbPrType->FormattingEnabled = true;
this->cbPrType->Items->AddRange(gcnew cli::array<
System::Object^ >(2) {L"Enumerative", L"Reconstructive"});
this->cbPrType->Location = System::Drawing::Point(104, 284);
this->cbPrType->Name = L"cbPrType";
this->cbPrType->Size = System::Drawing::Size(115, 21);
this->cbPrType->TabIndex = 16;
//
// dtPrDate
//
this->dtPrDate->Location = System::Drawing::Point(303, 284);
this->dtPrDate->Name = L"dtPrDate";
this->dtPrDate->Size = System::Drawing::Size(182, 20);
this->dtPrDate->TabIndex = 15;
//
// groupBox1
//
this->groupBox1->Controls->Add(this->tbDeltaTDescription);
this->groupBox1->Controls->Add(this->label9);
this->groupBox1->Controls->Add(this->tbBetaDescription);
this->groupBox1->Controls->Add(this->label8);
this->groupBox1->Controls->Add(this-
>tbAmplificationDescription);
    this->groupBox1->Controls->Add(this->label7);
    this->groupBox1->Controls->Add(this->label6);
    this->groupBox1->Controls->Add(this->tbOutputDescription);
    this->groupBox1->Controls->Add(this->label5);
    this->groupBox1->Controls->Add(this->tbInputDescription);
    this->groupBox1->Controls->Add(this->tbPrDescription);
    this->groupBox1->Controls->Add(this->label2);
    this->groupBox1->Location = System::Drawing::Point(6, 6);
    this->groupBox1->Name = L"groupBox1";
    this->groupBox1->Size = System::Drawing::Size(488, 228);
    this->groupBox1->TabIndex = 14;
    this->groupBox1->TabStop = false;
    this->groupBox1->Text = L"Descriptions";
    //
    // tbDeltaTDescription
    //
    this->tbDeltaTDescription->Location =
System::Drawing::Point(98, 195);
    this->tbDeltaTDescription->Name = L"tbDeltaTDescription";
    this->tbDeltaTDescription->Size = System::Drawing::Size(381,
20);
this->tbDeltaTDescription->TabIndex = 18;
//
// label9
//
this->label9->AutoSize = true;
this->label9->Location = System::Drawing::Point(7, 193);
this->label9->Name = L"label9";
this->label9->Size = System::Drawing::Size(41, 13);
this->label9->TabIndex = 17;
this->label9->Text = L"Delta t:";
//
// tbBetaDescription
//
```

```
    this->tbBetaDescription->Name = L"tbBetaDescription";
```

 this->tbBetaDescription->Size = System::Drawing::Size(381, 20);
 this->tbBetaDescription->TabIndex = 16;
 //
 // label8
 //
 this->label8->AutoSize = true;
 this->label8->Location = System::Drawing::Point(7, 169);
 this->label8->Name = L"label8";
 this->label8->Size = System::Drawing::Size(32, 13);
 this->label8->TabIndex = 15;
 this->label8->Text = L"Beta:";
 //
 // tbAmplificationDescription
 //
 this->tbAmplificationDescription->Location \(=\)
 System::Drawing::Point(98, 143);
this->tbAmplificationDescription->Name $=$
L"tbAmplificationDescription";
this->tbAmplificationDescription->Size =
System::Drawing::Size(381, 20);
this->tbAmplificationDescription->TabIndex = 14;
//
// label7
//
this->label7->AutoSize = true;
this->label7->Location = System::Drawing::Point(7, 143);
this->label7->Name = L"label7";
this->label7->Size = System::Drawing::Size(69, 13);
this->label7->TabIndex = 13;
this->label7->Text = L"Amplification:";
//
// label6
//
this->label6->AutoSize = true;
this->label6->Location = System::Drawing:: Point(7, 118);
this->label6->Name = L"label6";
this->label6->Size = System::Drawing::Size(42, 13);
this->label6->TabIndex = 12;
this->label6->Text = L"Output:";
//
// tbOutputDescription
//
this->tbOutputDescription->Location $=$
System::Drawing::Point(98, 115);
this->tbOutputDescription->Name = L"tbOutputDescription";
this->tbOutputDescription->Size = System: :Drawing::Size(381,
20);

```
this->tbOutputDescription->TabIndex = 11;
//
// label5
//
this->label5->AutoSize = true;
this->label5->Location = System::Drawing::Point(7, 93);
this->label5->Name = L"label5";
this->label5->Size = System::Drawing::Size(34, 13);
this->label5->TabIndex = 10;
this->label5->Text = L"Input:";
//
// tbInputDescription
```

```
                                    //
                                    this->tbInputDescription->Location = System::Drawing::Point(98,
90);
20);
35);
this->tbPrDescription->Multiline = true;
this->tbPrDescription->Name = L"tbPrDescription";
this->tbPrDescription->ScrollBars =
System::Windows::Forms::ScrollBars::Vertical;
    this->tbPrDescription->Size = System::Drawing::Size(469, 50);
    this->tbPrDescription->TabIndex = 6;
    //
    // label2
    //
    this->label2->AutoSize = true;
    this->label2->Location = System::Drawing::Point(7, 19);
    this->label2->Name = L"label2";
    this->label2->Size = System::Drawing::Size(52, 13);
    this->label2->TabIndex = 5;
    this->label2->Text = L"Scenario:";
    //
    // panel8
    //
    this->panel8->BackColor = System::Drawing::Color::Transparent;
    this->panel8->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel8.BackgroundImage")));
    this->panel8->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::None;
    this->panel8->Controls->Add(this->trbVii);
    this->panel8->Controls->Add(this->tbViiVal);
    this->panel8->Location = System::Drawing::Point(9, 379);
    this->panel8->Name = L"panel8";
    this->panel8->Size = System::Drawing::Size(301, 52);
    this->panel8->TabIndex = 17;
    //
    // trbVii
    //
    this->trbVii->Location = System::Drawing::Point(50, 14);
    this->trbVii->Maximum = 1000;
    this->trbVii->Name = L"trbVii";
    this->trbVii->Size = System::Drawing::Size(184, 45);
    this->trbVii->TabIndex = 7;
    this->trbVii->TickStyle =
System::Windows::Forms::TickStyle::None;
    this->trbVii->Value = 100;
    this->trbVii->Scroll += gcnew System::EventHandler(this,
&MainForm::trbVii_Scroll);
    //
    // tbViiVal
    //
    this->tbViiVal->Location = System::Drawing::Point(240, 14);
    this->tbViiVal->Name = L"tbViiVal";
    this->tbViiVal->Size = System::Drawing::Size(48, 20);
    this->tbViiVal->TabIndex = 11;
```

```
this->tbViiVal->Text = L"100";
//
// panel7
//
this->panel7->BackColor = System::Drawing::Color::Transparent;
this->panel7->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel7.BackgroundImage")));
this->panel7->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::None;
this->panel7->Controls->Add(this->trbDIU);
this->panel7->Controls->Add(this->tbDIUVal);
this->panel7->Location = System::Drawing::Point(9, 263);
this->panel7->Name = L"panel7";
this->panel7->Size = System::Drawing::Size(301, 52);
this->panel7->TabIndex = 16;
//
// trbDIU
//
this->trbDIU->BackColor = System::Drawing::Color::Transparent;
this->trbDIU->Location = System::Drawing::Point(50, 14);
this->trbDIU->Maximum = 100;
this->trbDIU->Minimum = 1;
this->trbDIU->Name = L"trbDIU";
this->trbDIU->Size = System::Drawing::Size(184, 45);
this->trbDIU->TabIndex = 10;
this->trbDIU->TickFrequency = 10;
this->trbDIU->TickStyle =
System::Windows::Forms::TickStyle::None;
    this->trbDIU->Value = 5;
    this->trbDIU->Scroll += gcnew System::EventHandler(this,
&MainForm::trbDIU_Scroll);
    //
    // tbDIUVal
    //
    this->tbDIUVal->Location = System::Drawing::Point(240, 14);
    this->tbDIUVal->Name = L"tbDIUVal";
    this->tbDIUVal->Size = System::Drawing::Size(48, 20);
    this->tbDIUVal->TabIndex = 11;
    this->tbDIUVal->Text = L"5";
    //
    // panel6
    //
    this->panel6->BackColor = System::Drawing::Color::Transparent;
    this->panel6->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel6.BackgroundImage")));
                                    this->panel6->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::None;
    this->panel6->Controls->Add(this->trbDeltaA);
    this->panel6->Controls->Add(this->tbDeltaAVal);
    this->panel6->Location = System::Drawing::Point(9, 321);
    this->panel6->Name = L"panel6";
    this->panel6->Size = System::Drawing::Size(301, 52);
    this->panel6->TabIndex = 15;
    //
    // trbDeltaA
    //
    this->trbDeltaA->Location = System::Drawing::Point(50, 14);
    this->trbDeltaA->Maximum = 100;
this->trbDeltaA->Name = L"trbDeltaA";
this->trbDeltaA->Size = System::Drawing::Size(184, 45);
```

```
    this->trbDeltaA->TabIndex = 9;
    this->trbDeltaA->TickStyle =
System::Windows::Forms::TickStyle::None;
    this->trbDeltaA->Value = 10;
    this->trbDeltaA->Scroll += gcnew System::EventHandler(this,
&MainForm::trbDeltaA_Scroll);
    //
    // tbDeltaAVal
    //
    this->tbDeltaAVal->Location = System::Drawing::Point(240, 14);
    this->tbDeltaAVal->Name = L"tbDeltaAVal";
    this->tbDeltaAVal->Size = System::Drawing::Size(48, 20);
    this->tbDeltaAVal->TabIndex = 11;
    this->tbDeltaAVal->Text = L"0.1";
    //
    // panel5
    //
    this->panel5->BackColor = System::Drawing::Color::Transparent;
    this->panel5->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel5.BackgroundImage")));
    this->panel5->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::None;
this->panel5->Controls->Add(this->trbDeltaT);
this->panel5->Controls->Add(this->tbDeltaTVal);
this->panel5->Location = System::Drawing::Point(9, 205);
this->panel5->Name = L"panel5";
this->panel5->Size = System::Drawing::Size(301, 52);
this->panel5->TabIndex = 14;
//
// trbDeltaT
//
this->trbDeltaT->Location = System::Drawing::Point(54, 14);
this->trbDeltaT->Maximum = 100;
this->trbDeltaT->Name = L"trbDeltaT";
this->trbDeltaT->Size = System::Drawing::Size(180, 45);
this->trbDeltaT->TabIndex = 8;
this->trbDeltaT->TickStyle =
System::Windows::Forms::TickStyle::None;
    this->trbDeltaT->Value = 1;
    this->trbDeltaT->Scroll += gcnew System::EventHandler(this,
&MainForm::trbDeltaT_Scroll);
    //
    // tbDeltaTVal
    //
    this->tbDeltaTVal->Location = System::Drawing::Point(240, 14);
    this->tbDeltaTVal->Name = L"tbDeltaTVal";
    this->tbDeltaTVal->Size = System::Drawing::Size(48, 20);
    this->tbDeltaTVal->TabIndex = 11;
    this->tbDeltaTVal->Text = L"1";
    //
    // panel4
    //
    this->panel4->BackColor = System::Drawing::Color::Transparent;
    this->panel4->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel4.BackgroundImage")));
                            this->panel4->BackgroundImageLayout =
System: :Windows: :Forms::ImageLayout: :None;
                            this->panel4->Controls->Add(this->trbBeta);
this->panel4->Controls->Add(this->tbBetaVal);
this->panel4->Location = System::Drawing::Point(9, 147);
```

```
this->panel4->Name = L"panel4";
this->panel4->Size = System::Drawing::Size(301, 52);
this->panel4->TabIndex = 13;
//
// trbBeta
//
this->trbBeta->Location = System::Drawing::Point(54, 14);
this->trbBeta->Maximum = 100;
this->trbBeta->Name = L"trbBeta";
this->trbBeta->Size = System::Drawing::Size(180, 45);
this->trbBeta->TabIndex = 6;
this->trbBeta->TickStyle =
System::Windows::Forms::TickStyle::None;
    this->trbBeta->Value = 20;
    this->trbBeta->Scroll += gcnew System::EventHandler(this,
&MainForm::trbBeta_Scroll);
    //
    // tbBetaVal
    //
    this->tbBetaVal->Location = System::Drawing::Point(240, 14);
    this->tbBetaVal->Name = L"tbBetaVal";
    this->tbBetaVal->Size = System::Drawing::Size(48, 20);
    this->tbBetaVal->TabIndex = 11;
    this->tbBetaVal->Text = L"0.2";
    //
    // panel3
    //
    this->panel3->BackColor = System::Drawing::Color::Transparent;
    this->panel3->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel3.BackgroundImage")));
    this->panel3->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::None;
    this->panel3->Controls->Add(this->trbAmplification);
    this->panel3->Controls->Add(this->tbAVal);
    this->panel3->Location = System::Drawing::Point(9, 89);
    this->panel3->Name = L"panel3";
    this->panel3->Size = System::Drawing::Size(301, 52);
    this->panel3->TabIndex = 12;
    //
    // trbAmplification
    //
    this->trbAmplification->BackColor =
System::Drawing::Color::Transparent;
    this->trbAmplification->Location = System::Drawing::Point(50,
13);
    this->trbAmplification->Maximum = 1000;
    this->trbAmplification->Name = L"trbAmplification";
    this->trbAmplification->Size = System::Drawing::Size(184, 45);
    this->trbAmplification->TabIndex = 5;
    this->trbAmplification->TickFrequency = 100;
    this->trbAmplification->TickStyle =
System::Windows::Forms::TickStyle::None;
    this->trbAmplification->Value = 100;
    this->trbAmplification->Scroll += gcnew
System::EventHandler(this, &MainForm::trbAmplification_Scroll);
    //
    // tbAVal
    //
    this->tbAVal->Location = System::Drawing::Point(240, 13);
    this->tbAVal->Name = L"tbAVal";
    this->tbAVal->Size = System::Drawing::Size(48, 20);
```

```
    this->tbAVal->TabIndex = 11;
    this->tbAVal->Text = L"10.0";
    //
    // btStop
    //
    this->btStop->Image = (cli::safe_cast<System::Drawing::Image^
>(resources->GetObject(L"btStop.Image")));
    this->btStop->ImageAlign =
System::Drawing::ContentAlignment::MiddleLeft;
    this->btStop->Location = System::Drawing::Point(257, 444);
    this->btStop->Name = L"btStop";
    this->btStop->Size = System::Drawing::Size(40, 38);
    this->btStop->TabIndex = 2;
    this->btStop->TextAlign =
System::Drawing: :ContentAlignment::BottomCenter;
    this->btStop->UseVisualStyleBackColor = true;
    this->btStop->Click += gcnew System::EventHandler(this,
&MainForm::btStop_Click);
        //
        // btStart
        //
                            this->btStart->Image = (cli::safe_cast<System::Drawing::Image^
>(resources->GetObject(L"btStart.Image")));
    this->btStart->ImageAlign =
System::Drawing::ContentAlignment::MiddleLeft;
    this->btStart->Location = System::Drawing::Point(16, 444);
    this->btStart->Name = L"btStart";
    this->btStart->Size = System::Drawing::Size(40, 38);
    this->btStart->TabIndex = 2;
    this->btStart->TextAlign =
System::Drawing::ContentAlignment::MiddleRight;
    this->btStart->UseVisualStyleBackColor = true;
    this->btStart->Click += gcnew System::EventHandler(this,
&MainForm::btStart_Click);
    //
    // panel2
    //
    this->panel2->BackColor = System::Drawing::Color::Transparent;
    this->panel2->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"panel2.BackgroundImage")));
                            this->panel2->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::None;
    this->panel2->Controls->Add(this->label10);
    this->panel2->Location = System::Drawing::Point(9, 3);
    this->panel2->Name = L"panel2";
    this->panel2->Size = System::Drawing::Size(301, 69);
    this->panel2->TabIndex = 0;
    //
    // label10
//
this->label10->AutoSize = true;
this->label10->BackColor = System::Drawing::Color::Transparent;
this->label10->Font = (gcnew System::Drawing::Font(L"Microsoft
Sans Serif", 20, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,
                    static_cast<System::Byte>(0)));
this->label10->ForeColor = System::Drawing::Color::White;
this->label10->Location = System::Drawing::Point(11, 16);
this->label10->Name = L"label10";
this->label10->Size = System::Drawing::Size(191, 31);
this->label10->TabIndex = 0;
this->label10->Text = L"Control Panel";
```

```
    //
    // saveFileDialog
    //
    this->saveFileDialog->FileName = L"output.xls";
    //
// MainForm
//
this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
this->AutoScaleMode =
System::Windows::Forms::AutoScaleMode::Font;
    this->ClientSize = System::Drawing::Size(890, 606);
    this->Controls->Add(this->splitContainer1);
    this->Controls->Add(this->toolStrip1);
    this->Controls->Add(this->statusStrip1);
    this->Controls->Add(this->menuStrip1);
    this->FormBorderStyle =
System::Windows::Forms::FormBorderStyle::FixedSingle;
    this->Icon = (cli::safe_cast<System::Drawing::Icon^
>(resources->GetObject(L"$this.Icon")));
    this->MainMenuStrip = this->menuStrip1;
    this->Name = L"MainForm";
    this->StartPosition =
System::Windows::Forms::FormStartPosition::CenterScreen;
    this->Text = L"Proof of Concept Application for Cybernetic
Modelling";
    this->statusStrip1->ResumeLayout(false);
    this->statusStrip1->PerformLayout();
    this->menuStrip1->ResumeLayout(false);
    this->menuStrip1->PerformLayout();
    this->toolStrip1->ResumeLayout(false);
    this->toolStrip1->PerformLayout();
    this->splitContainer1->Panel1->ResumeLayout(false);
    this->splitContainer1->Panel2->ResumeLayout(false);
    (cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->splitContainer1))->EndInit();
    this->splitContainer1->ResumeLayout(false);
    this->panel1->ResumeLayout(false);
    this->panel1->PerformLayout();
    this->tabControl->ResumeLayout(false);
    this->tabList->ResumeLayout(false);
    this->tabChart->ResumeLayout(false);
    (cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->chartView))->EndInit();
    this->tabDetails->ResumeLayout(false);
    this->tabDetails->PerformLayout();
    this->groupBox1->ResumeLayout(false);
    this->groupBox1->PerformLayout();
    this->panel8->ResumeLayout(false);
    this->panel8->PerformLayout();
    (cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbVii))->EndInit();
    this->panel7->ResumeLayout(false);
    this->panel7->PerformLayout();
    (cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbDIU))->EndInit();
    this->panel6->ResumeLayout(false);
    this->panel6->PerformLayout();
    (cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbDeltaA))->EndInit();
    this->panel5->ResumeLayout(false);
    this->panel5->PerformLayout();
```

(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbDeltat))->EndInit();
this->panel4->ResumeLayout(false);
this->panel4->PerformLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbBeta))->EndInit();
this->panel3->ResumeLayout(false);
this->panel3->PerformLayout();
(cli::safe_cast<System::ComponentModel::ISupportInitialize^
>(this->trbAmplification))->EndInit();
this->panel2->ResumeLayout(false);
this->panel2->PerformLayout();
this->ResumeLayout(false);
this->PerformLayout();
\}
\#pragma endregion
private: void UpdateDecisionMsgMethod(String^ msg)\{
tsslbDecisionMsg->Text=msg;
\}
private: void UpdateIterationMsgMethod(String^ msg)\{
tsslbIterationMsg->Text $=$ msg;
\}
private: void AddListDataMethod(int $n T$, double dAfb, double dVo, double dDeltaA,
double dBetaGold, double dDeltaBeta,
double dAfbGold, double dDeltaAfbGold, double dVoGold, double
dDeltaAfbAfbg)\{
// populate ListView
ListViewItem ^ lviTemp = gcnew
ListViewItem(nT.ToString());

```
lviTemp->SubItems->Add(dAfb.ToString());
lviTemp->SubItems->Add(dVo.ToString());
lviTemp->SubItems->Add(dDeltaA.ToString());
lviTemp->SubItems->Add(dBetaGold.ToString());
lviTemp->SubItems->Add(dDeltaBeta.ToString());
lviTemp->SubItems->Add(dAfbGold.ToString());
lviTemp->SubItems->Add(dDeltaAfbGold.ToString());
lviTemp->SubItems->Add(dVoGold.ToString());
lviTemp->SubItems->Add(dDeltaAfbAfbG.ToString());
listView->Items->Add(lviTemp);
lviTemp->EnsureVisible();
// update Chart
chartView->Series["Afb"]->Points->AddXY(nT, dAfb);
//chartView->Series["Vo"]->Points->AddXY(nT,dVo);
chartView->Series["AfbGold"]->Points-
```

>AddXY(nT,dAfbGold);
$\left.\{0: F 3\} \backslash r \backslash n^{\prime}, d V o\right) ;$
// update labels
lbAmplifier->Text $=$ "A $="+A$;
lbOutput->Text = String: :Format("Output =
lbAfb->Text = String::Format("Afb = \{0:F3\}\r\n", dAfb);
lbInput->Text = "Input = " + Viin;
lbBetaFeedback->Text = "Beta = " + beta;
private: System: :Void newToolStripMenuItem_Click(System::Object^ sender, System::EventArgs^ e) \{ onNew(sender, e);
\}
private: System: :Void aboutToolStripMenuItem_Click(System: Object^ sender, System::EventArgs^ e) \{ dlgAbout->ShowDialog();
\}
private: System: :Void dataChartToolStripMenuItem_Click(System: :Object^ sender, System::EventArgs^ e) \{ tabControl->SelectTab(1);
\}
private: System: :Void dataListToolStripMenuItem_Click(System::Object^ sender, System::EventArgs^ e) \{ tabControl->SelectTab(0);
\}
private: System: :Void detailsToolStripMenuItem_Click(System::Object^ sender, System::EventArgs^ e) \{ tabControl->SelectTab(2);
\}
private: System::Void saveAsToolStripMenuItem_Click(System::Object^ sender,
System::EventArgs^ e) \{ onSaveAs(sender, e);
\}
private: System::Void tsbNew_Click(System::Object^ sender, System::EventArgs^ e) \{ onNew(sender,e); \}
private: void onSaveAs(System: Object^ sender, System: :EventArgs^ e) \{ //this->saveFileDialog->FileName = "*.xls"; //if (this->saveFileDialog->ShowDialog() ==
System::Windows::Forms::DialogResult::OK)\{

```
Excel::Application ^exApp = gcnew Excel::ApplicationClass();
// Add a workbook (comes with three Worksheets)
Excel::Workbook^ exWb = exApp->Workbooks-
```

>Add(Type::Missing);
// Delete the last two worksheets
//safe_cast[Excel::Worksheet^](Excel::Worksheet%5E)(exApp->ActiveWorkbook-
>Sheets[3])->Delete();
>Sheets[2])->Delete();
// make worksheet active safe_cast<Excel: :Worksheet^>(exApp->ActiveWorkbook->Sheets->Item[1])->Select(Type::Missing);
// Create a variable for the active Worksheet's tracking handle
// (first Worksheet is the default active one)
Excel::Worksheet^ exWs = safe_cast[Excel::Worksheet^](Excel::Worksheet%5E)(exApp-
>ActiveSheet);
// Rename the active worksheet
// info sheet
exWs->Name = "Info";
int row=1;

```
int col=1;
// Put Column titles
exWs->Cells[row, col] = "Name";
exWs->Cells[row, col+1] = "Value";
exWs->Cells[row, col+2] = "Description";
// set column width
exWs->Range["A1:B1", Type::Missing]->EntireColumn->ColumnWidth
```

$=12 ;$
255;
row++;
// put column data
exWs->Cells[row, col] = "Project";
exWs->Cells[row, col+1] = "";
exWs->Cells[row, col+2] = prInfo->ProjectName;
row++;
exWs->Cells[row, col] = "Scenario";
exWs->Cells[row, col+1] = "";
exWs->Cells[row, col+2] = prInfo->ProjectDescription;
row++;
exWs->Cells[row, col] = "Date";
exWs->Cells[row, col+1] = "";
exWs->Cells[row, col+2] = prInfo->ProjectDate;
row++;
exWs->Cells[row, col] = "Viin";
exWs->Cells[row, col+1] = Viin;
exWs->Cells[row, col+2] = prInfo->InputDescription;
row++;
exWs->Cells[row, col] = "Amplification";
exWs->Cells[row, col+1] $=A$;
exWs->Cells[row, col+2] = prInfo->AmplificationDescription;
row++;
exWs->Cells[row, col] = "Beta";
exWs->Cells[row, col+1] = beta;
exWs->Cells[row, col+2] = prInfo->BetaDescription;
row++;
exWs->Cells[row, col] = "Delta t";
exWs->Cells[row, col+1] = delta_t;
exWs->Cells[row, col+2] = prInfo->DeltaTDescription;
row++;
exWs->Cells[row, col] = "Vo";
exWs->Cells[row, col+1] = "";
exWs->Cells[row, col+2] = prInfo->OutputDescription;
// data sheet
safe_cast<Excel: :Worksheet^>(exApp->ActiveWorkbook->Sheets-
>Item[2])->Select(Type::Missing);

```
exWs = safe_cast<Excel::Worksheet^>(exApp->ActiveSheet);
exWs->Name = "Data";
row=1;
col=1;
// Put Column titles
exWs->Cells[row, col] = "t";
exWs->Cells[row, col+1] = "Afb";
exWs->Cells[row, col+2] = "Output(Vo)";
```

```
    exWs->Cells[row, col+3] = "DeltaA";
    exWs->Cells[row, col+4] = "BetaGoldRatio";
    exWs->Cells[row, col+5] = "DeltaBeta";
    exWs->Cells[row, col+6] = "AfbGoldR";
    exWs->Cells[row, col+7] = "DeltaAfbGoldR";
    exWs->Cells[row, col+8] = "OutputGoldR";
    exWs->Cells[row, col+9] = "DeltaAfbAfbG";
    row++;
    // add data
    for(int i=0; i<listView->Items->Count; ++i){
        exWs->Cells[row, col] = listView->Items[i]-
    exWs->Cells[row, col+1] = listView->Items[i]-
    exWs->Cells[row, col+2] = listView->Items[i]
>SubItems[2]->Text; //"Output(Vo)";
    exWs->Cells[row, col+3] = listView->Items[i]-
>SubItems[3]->Text; //"DeltaA";
>SubItems[4]->Text; //"BetaGold";
    exWs->Cells[row, col+5] = listView->Items[i]
>SubItems[5]->Text; //"DeltaBeta";
    exWs->Cells[row, col+6] = listView->Items[i]-
>SubItems[6]->Text; //"AfbGold";
    exWs->Cells[row, col+7] = listView->Items[i]-
>SubItems[7]->Text; //"DeltaAfbGold";
    exWs->Cells[row, col+8] = listView->Items[i]-
>SubItems[8]->Text; //"OutpurGold";
    exWs->Cells[row, col+9] = listView->Items[i]-
>SubItems[9]->Text; //"DeltaAfbAfbG";
    row++;
    }
    // set column width
    exWs->Range["A1", Type::Missing]->EntireColumn->ColumnWidth
= 6;
= 14;
    // Show the Workbook
    exApp->Visible = true;
    //exWb->SaveAs(saveFileDialog-
>FileName, nullptr, nullptr, nullptr,nullptr, nullptr, Excel::XlSaveAsAccessMode::xlNoChange,
    // nullptr,nullptr,nullptr,nullptr,nullptr);
    //exApp->Save(saveFileDialog->FileName);
    //exApp->Quit();
    //}
    }
    private: void onOpen(System::Object^ sender, System::EventArgs^ e) {
    if (openFileDialog->ShowDialog() ==
System::Windows::Forms::DialogResult::OK){
    // to do
    MessageBox::Show("Not available yet!");
```

\}
\}
private: void onNew(System::Object^ sender, System::EventArgs^ e) \{ dlgPrInfo->clearFields();
if (dlgPrInfo->ShowDialog() ==
System::Windows::Forms::DialogResult::OK)\{ dlgPrInfo->getProjectInformation(prInfo);
tbPrName->Text = prInfo->ProjectName; tbPrDescription->Text = prInfo->ProjectDescription; tbInputDescription->Text = prInfo->InputDescription; tbOutputDescription->Text = prInfo->OutputDescription; tbAmplificationDescription->Text = prInfo-
>AmplificationDescription; tbBetaDescription->Text = prInfo->BetaDescription; tbDeltaTDescription->Text = prInfo->DeltaTDescription; switch (prInfo->ProjectType)
\{
case 0:\{
cbPrType->SelectedIndex = 0;
break;
case 1:\{
cbPrType->SelectedIndex = 1;
break;
\}
\}
dtPrDate->Value $=$ prInfo->ProjectDate;
\}
\}
private: System::Void openToolStripMenuItem_Click(System::Object^ sender, System::EventArgs^ e) \{ onOpen(sender, e);
\}
private: System::Void tsbOpen_Click(System::Object^ sender, System::EventArgs^ e) \{ onOpen(sender,e); \}
private: System::Void trbDIU_Scroll(System::Object^ sender, System::EventArgs^ e) \{ tbDIUVal->Text = (trbDIU->Value).ToString();
\}
private: System::Void trbVii_Scroll(System::Object^ sender, System::EventArgs^ e) \{ tbViiVal->Text = (trbVii->Value).ToString();
\}
private: System::Void trbDeltaA_Scroll(System::Object^ sender, System::EventArgs^
e) \{
tbDeltaAVal->Text $=(1.0 *$ trbDeltaA->Value/100.0).ToString();
\}
private: System::Void trbDeltaT_Scroll(System::Object^ sender, System::EventArgs^
e) \{
tbDeltaTVal->Text = (trbDeltaT->Value).ToString();
\}
private: System::Void trbBeta_Scroll(System::Object^ sender, System::EventArgs^ e)
\{
tbBetaVal->Text = (1.0*trbBeta->Value/100.0).ToString();
\}
private: System::Void trbAmplification_Scroll(System::Object^ sender, System::EventArgs^ e) \{
tbAVal->Text $=(1.0 *$ trbAmplification->Value/10.0).ToString();
\}

```
    private: void clearControls(){
    listView->Items->Clear();
    for(int i=0; i<chartView->Series->Count; ++i){
        chartView->Series[i]->Points->Clear();
    }
    }
    private: System::Void btStart_Click(System::Object^ sender, System::EventArgs^ e) {
    onStart(sender,e);
    }
    private: System::Void btStop_Click(System::Object^ sender, System::EventArgs^ e) {
    onStop(sender,e);
    }
    private: System::Void tsbStart_Click(System::Object^ sender, System::EventArgs^ e)
{
    onStart(sender,e);
    }
    private: System::Void tsbStop_Click(System::Object^ sender, System::EventArgs^ e) {
    onStop(sender,e);
    }
    private: System::Void stopToolStripMenuItem_Click(System::Object^ sender,
System::EventArgs^ e) {
    onStop(sender,e);
    }
    private: System::Void startToolStripMenuItem_Click(System::Object^ sender,
System::EventArgs^ e) {
    onStart(sender,e);
    }
    private: System::Void exitToolStripMenuItem_Click(System::Object^ sender,
System::EventArgs^ e) {
    onStop(sender,e);
    Application::Exit();
        }
    private: void onStart(System::Object^ sender, System::EventArgs^ e) {
    clearControls();
    // get values form UI
    Viin = Convert::ToDouble(tbViiVal->Text);
    A = Convert::ToDouble(tbAVal->Text);
    beta = Convert::ToDouble(tbBetaVal->Text);
    delta_t = Convert::ToInt32(tbDeltaTVal->Text);
    dwTimeout = Convert::ToInt32(tbDIUVal->Text);
    delta_A = Convert::ToDouble(tbDeltaAVal->Text);
    homeostaticState = FALSE;
    if(hTesterThread!=NULL){
        TerminateThread(hTesterThread, -10);
        CloseHandle(hTesterThread);
        hTesterThread = NULL;
    }
    if(hDecisionThread!=NULL){
                TerminateThread(hDecisionThread, -11);
                CloseHandle(hDecisionThread);
                hDecisionThread = NULL;
    }
    if(hIterationThread!=NULL){
                TerminateThread(hIterationThread, -12);
```

```
        CloseHandle(hIterationThread);
        hIterationThread = NULL;
        }
        hTesterThread = CreateThread(NULL, 0, TesterThreadProc, NULL, 0, NULL);
        hDecisionThread = CreateThread(NULL, 0, DecisionThreadProc, NULL, 0, NULL);
        hIterationThread = CreateThread(NULL, 0, IterationThreadProc, NULL, 0, NULL);
        }
    private: void onStop(System::Object^ sender, System::EventArgs^ e) {
        if(hTesterThread!=NULL){
                            TerminateThread(hTesterThread, -10);
        CloseHandle(hTesterThread);
        hTesterThread = NULL;
            }
            if(hDecisionThread!=NULL){
                            TerminateThread(hDecisionThread, -11);
                            CloseHandle(hDecisionThread);
                            hDecisionThread = NULL;
            }
                if(hIterationThread!=NULL){
                            TerminateThread(hIterationThread, -12);
                            CloseHandle(hIterationThread);
                            hIterationThread = NULL;
                }
        }
    };
}
[STAThreadAttribute]
int main()
{
// init events
hCloseEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
hContinueEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
hEventObject = CreateEvent(NULL,TRUE,FALSE,NULL);
ResetEvent(hCloseEvent);
ResetEvent(hContinueEvent);
ResetEvent(hEventObject);
using namespace ProjectGUI;
Application::EnableVisualStyles();
Application::SetCompatibleTextRenderingDefault(false);
MainForm ^f = gcnew MainForm;
f->ShowDialog();
// Store Thread handles in Array of Thread
HANDLE hTempHandles[] = { hTesterThread, hDecisionThread, hIterationThread};
int nNumHandles = sizeof(hTempHandles) / sizeof(hTempHandles[0]);
int iHandles = 0;
// fine active handles
for( int n = 0; n < nNumHandles; n ++ ){
    if(hTempHandles[n]!=NULL){
            iHandles++;
    }
}
```

```
    // Wait until all threads have terminated.
    if (iHandles > 0)
    {
        // There are threads to shut down - set the closure event.
        SetEvent (hCloseEvent);
    switch (WaitForMultipleObjects (iHandles, hTempHandles, TRUE,
dwCloseWaitMillies))
    {
    case WAIT_FAILED:
                                    MessageBox::Show("WaitForMultipleObjects failed, " + GetLastError());
                                    break;
    case WAIT_OBJECT_0:
                MessageBox::Show("All COM threads closed OK");
                break;
    case WAIT_ABANDONED:
                MessageBox::Show("Wait abandoned");
                break;
    case WAIT_TIMEOUT:
                MessageBox::Show("Timed out waiting for COM threads");
                break;
    }
    if (ResetEvent (hCloseEvent))
                ;// Reset close event for next use
    else
        {
        MessageBox::Show("Attempt to reset close event failed " +
GetLastError());
            }
        }
        else
    {
        //No active threads, exiting
    }
    // Close all thread handles upon completion.
    for( int n = 0; n < nNumHandles; n ++ ){
        if(hTempHandles[n]!=NULL){
            CloseHandle( hTempHandles[n] );
    }
    }
    //DWORD result1, result2; // these variables will receive the return values
    //rc = GetExitCodeThread(threadArray[0],&result1);
    //rc = GetExitCodeThread(threadArray[1],&result2);
    // close events
    CloseHandle(hEventObject);
    CloseHandle(hContinueEvent);
    CloseHandle(hCloseEvent);
    return 0;
}
```

```
#pragma once
using namespace System;
using namespace System::Timers;
public enum ProjectKind {Enumerative, Reconstructive};
public ref class ProjectInformation
{
public:
String^ m_prName;
String^ m_prOwner;
String^ m_prDescription;
String^ m_inputDescription;
String^ m_outputDescription;
String^ m_amplificationDescription;
String^ m_betaDescription;
String^ m_deltaTDescription;
ProjectKind m_prType;
DateTime m_prDate;
String^ m_outputFileName;
property String^ ProjectName{
    String^ get() {return m_prName;}
    void set(String^ val) {m_prName = val;}
}
property String^ ProjectOwner{
    String^ get() {return m_prOwner;}
    void set(String^ val) {m_prOwner = val;}
}
property String^ ProjectDescription{
    String^ get() {return m_prDescription;}
    void set(String^ val) {m_prDescription = val;}
}
property String^ InputDescription{
    String^ get() {return m_inputDescription;}
    void set(String^ val) {m_inputDescription = val;}
}
property String^ OutputDescription{
    String^ get() {return m_outputDescription;}
    void set(String^ val) {m_outputDescription = val;}
}
property String^ AmplificationDescription{
            String^ get() {return m_amplificationDescription;}
            void set(String^ val) {m_amplificationDescription = val;}
}
property String^ BetaDescription{
    String^ get() {return m_betaDescription;}
    void set(String^ val) {m_betaDescription = val;}
}
property String^ DeltaTDescription{
    String^ get() {return m_deltaTDescription;}
    void set(String^ val) {m_deltaTDescription = val;}
}
property ProjectKind ProjectType{
    ProjectKind get() {return m_prType;}
    void set(ProjectKind val) {m_prType = val;}
}
property DateTime ProjectDate
```

```
    {
        DateTime get() { return m_prDate; }
        void set(DateTime val) { m_prDate = val; }
    };
    property String^ OutputFileName{
        String^ get() {return m_outputFileName;}
        void set(String^ val) {m_outputFileName = val;}
    }
public:
    ProjectInformation(void)
    {
        setDefaults();
    }
    void setDefaults(){
        m_prName = "New project";
        m_prOwner = "";
        m_prDescription = "";
        m_inputDescription = "Input";
        m_outputDescription = "Output";
            m_amplificationDescription = "";
            m_betaDescription = "";
            m_deltaTDescription = "";
            m_prType = ProjectKind::Enumerative;
            m_prDate = DateTime::Now;
            m_outputFileName = "output.txt";
    }
};
#pragma once
#include "ProjectInformation.h"
namespace ProjectGUI {
using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;
/// <summary>
/// Summary for ProjectInfoDlg
/// </summary>
public ref class ProjectInfoDlg : public System::Windows::Forms::Form
{
public:
    ProjectInfoDlg(void)
    {
                InitializeComponent();
                cbPrType->SelectedIndex=0;
    }
protected:
        /// <summary>
        /// Clean up any resources being used.
        /// </summary>
        ~ProjectInfoDlg()
```

```
    {
        if (components)
        {
            delete components;
        }
    }
    private: System::Windows::Forms::Button^ btnOk;
    private: System::Windows::Forms::DateTimePicker^ dtPrDate;
    private: System::Windows::Forms::ComboBox^ cbPrType;
    private: System::Windows::Forms::TextBox^ tbPrName;
    private: System::Windows::Forms::Label^ label1;
    private: System::Windows::Forms::Label^ label2;
    private: System::Windows::Forms::TextBox^ tbPrDescription;
    private: System::Windows::Forms::Label^ label3;
    private: System::Windows::Forms::Label^ label4;
    private: System::Windows::Forms::TextBox^ tbInputDescription;
    private: System::Windows::Forms::Label^ label5;
    private: System::Windows::Forms::TextBox^ tbOutputDescription;
    private: System::Windows::Forms::Label^ label6;
    private: System::Windows::Forms::GroupBox^ groupBox1;
    private: System::Windows::Forms::TextBox^ tbBetaDescription;
    private: System::Windows::Forms::Label^ label8;
    private: System::Windows::Forms::TextBox^ tbAmplificationDescription;
    private: System::Windows::Forms::Label^ label7;
    private: System::Windows::Forms::Label^ label9;
    private: System::Windows::Forms::TextBox^ tbDeltaTDescription;
    protected:
    private:
        /// <summary>
        /// Required designer variable.
        /// </summary>
        System::ComponentModel::Container ^components;
#pragma region Windows Form Designer generated code
    /// <summary>
    /// Required method for Designer support - do not modify
    /// the contents of this method with the code editor.
    /// </summary>
    void InitializeComponent(void)
    {
                            System::ComponentModel::ComponentResourceManager^ resources = (gcnew
System::ComponentModel::ComponentResourceManager(ProjectInfoDlg::typeid));
    this->btnOk = (gcnew System::Windows::Forms::Button());
    this->dtPrDate = (gcnew System::Windows::Forms::DateTimePicker());
    this->cbPrType = (gcnew System::Windows::Forms::ComboBox());
    this->tbPrName = (gcnew System::Windows::Forms::TextBox());
    this->label1 = (gcnew System::Windows::Forms::Label());
    this->label2 = (gcnew System::Windows::Forms::Label());
    this->tbPrDescription = (gcnew System::Windows::Forms::TextBox());
    this->label3 = (gcnew System::Windows::Forms::Label());
    this->label4 = (gcnew System::Windows::Forms::Label());
    this->tbInputDescription = (gcnew System::Windows::Forms::TextBox());
    this->label5 = (gcnew System::Windows::Forms::Label());
    this->tbOutputDescription = (gcnew System::Windows::Forms::TextBox());
    this->label6 = (gcnew System::Windows::Forms::Label());
    this->groupBox1 = (gcnew System::Windows::Forms::GroupBox());
    this->tbDeltaTDescription = (gcnew System::Windows::Forms::TextBox());
    this->label9 = (gcnew System::Windows::Forms::Label());
    this->tbBetaDescription = (gcnew System::Windows::Forms::TextBox());
    this->label8 = (gcnew System::Windows::Forms::Label());
```

```
    this->tbAmplificationDescription = (gcnew
System::Windows::Forms::TextBox());
    this->label7 = (gcnew System::Windows::Forms::Label());
    this->groupBox1->SuspendLayout();
    this->SuspendLayout();
    //
    // btnOk
    //
    this->btnOk->DialogResult = System::Windows::Forms::DialogResult::OK;
    this->btnOk->Location = System::Drawing::Point(425, 444);
    this->btnOk->Name = L"btnOk";
    this->btnOk->Size = System::Drawing::Size(75, 23);
    this->btnOk->TabIndex = 0;
    this->btnOk->Text = L"OK";
    this->btnOk->UseVisualStyleBackColor = true;
    this->btnOk->Click += gcnew System::EventHandler(this,
&ProjectInfoDlg::btnOk_Click);
    //
    // dtPrDate
    //
    this->dtPrDate->Location = System::Drawing::Point(285, 93);
    this->dtPrDate->Name = L"dtPrDate";
    this->dtPrDate->Size = System::Drawing::Size(206, 20);
    this->dtPrDate->TabIndex = 1;
    //
    // cbPrType
    //
    this->cbPrType->FormattingEnabled = true;
    this->cbPrType->Items->AddRange(gcnew cli::array< System::Object^ >(2)
{L"Enumerative", L"Reconstructive"});
    this->cbPrType->Location = System::Drawing::Point(90, 91);
    this->cbPrType->Name = L"cbPrType";
    this->cbPrType->Size = System::Drawing::Size(115, 21);
    this->cbPrType->TabIndex = 2;
    //
    // tbPrName
    //
    this->tbPrName->Location = System::Drawing::Point(90, 59);
    this->tbPrName->Name = L"tbPrName";
    this->tbPrName->Size = System::Drawing::Size(401, 20);
    this->tbPrName->TabIndex = 3;
    //
    // label1
    //
    this->label1->AutoSize = true;
    this->label1->Location = System::Drawing::Point(12, 62);
    this->label1->Name = L"label1";
    this->label1->Size = System::Drawing::Size(72, 13);
    this->label1->TabIndex = 4;
    this->label1->Text = L"Project name:";
    //
    // label2
    //
    this->label2->AutoSize = true;
    this->label2->Location = System::Drawing::Point(10, 23);
    this->label2->Name = L"label2";
    this->label2->Size = System::Drawing::Size(52, 13);
    this->label2->TabIndex = 5;
    this->label2->Text = L"Scenario:";
    //
    // tbPrDescription
    //
```

```
this->tbPrDescription->Location = System::Drawing::Point(10, 40);
this->tbPrDescription->Multiline = true;
this->tbPrDescription->Name = L"tbPrDescription";
this->tbPrDescription->ScrollBars =
System::Windows::Forms::ScrollBars::Vertical;
this->tbPrDescription->Size = System::Drawing::Size(469, 50);
this->tbPrDescription->TabIndex = 6;
//
// label3
//
this->label3->AutoSize = true;
this->label3->Location = System::Drawing::Point(211, 95);
this->label3->Name = L"label3";
this->label3->Size = System::Drawing::Size(68, 13);
this->label3->TabIndex = 7;
this->label3->Text = L"Current date:";
//
// label4
//
this->label4->AutoSize = true;
this->label4->Location = System::Drawing::Point(12, 94);
this->label4->Name = L"label4";
this->label4->Size = System::Drawing::Size(66, 13);
this->label4->TabIndex = 8;
this->label4->Text = L"Project type:";
//
// tbInputDescription
//
this->tbInputDescription->Location = System::Drawing::Point(10, 111);
this->tbInputDescription->Name = L"tbInputDescription";
this->tbInputDescription->Size = System::Drawing::Size(469, 20);
this->tbInputDescription->TabIndex = 9;
//
// label5
//
this->label5->AutoSize = true;
this->label5->Location = System::Drawing::Point(10, 94);
this->label5->Name = L"label5";
this->label5->Size = System::Drawing::Size(34, 13);
this->label5->TabIndex = 10;
this->label5->Text = L"Input:";
//
// tbOutputDescription
//
this->tbOutputDescription->Location = System::Drawing::Point(10, 152);
this->tbOutputDescription->Name = L"tbOutputDescription";
this->tbOutputDescription->Size = System::Drawing::Size(471, 20);
this->tbOutputDescription->TabIndex = 11;
//
// label6
//
this->label6->AutoSize = true;
this->label6->Location = System::Drawing::Point(10, 135);
this->label6->Name = L"label6";
this->label6->Size = System::Drawing::Size(42, 13);
this->label6->TabIndex = 12;
this->label6->Text = L"Output:";
//
// groupBox1
//
this->groupBox1->Controls->Add(this->tbDeltaTDescription);
this->groupBox1->Controls->Add(this->label9);
```

```
this->groupBox1->Controls->Add(this->tbBetaDescription);
this->groupBox1->Controls->Add(this->label8);
this->groupBox1->Controls->Add(this->tbAmplificationDescription);
this->groupBox1->Controls->Add(this->label7);
this->groupBox1->Controls->Add(this->label6);
this->groupBox1->Controls->Add(this->tbOutputDescription);
this->groupBox1->Controls->Add(this->label5);
this->groupBox1->Controls->Add(this->tbInputDescription);
this->groupBox1->Controls->Add(this->tbPrDescription);
this->groupBox1->Controls->Add(this->label2);
this->groupBox1->Location = System::Drawing::Point(12, 128);
this->groupBox1->Name = L"groupBox1";
this->groupBox1->Size = System::Drawing::Size(488, 310);
this->groupBox1->TabIndex = 13;
this->groupBox1->TabStop = false;
this->groupBox1->Text = L"Descriptions";
//
// tbDeltaTDescription
//
this->tbDeltaTDescription->Location = System::Drawing::Point(10, 275);
this->tbDeltaTDescription->Name = L"tbDeltaTDescription";
this->tbDeltaTDescription->Size = System::Drawing::Size(471, 20);
this->tbDeltaTDescription->TabIndex = 18;
//
// label9
//
this->label9->AutoSize = true;
this->label9->Location = System::Drawing::Point(10, 258);
this->label9->Name = L"label9";
this->label9->Size = System::Drawing::Size(41, 13);
this->label9->TabIndex = 17;
this->label9->Text = L"Delta t:";
//
// tbBetaDescription
//
this->tbBetaDescription->Location = System::Drawing::Point(10, 234);
this->tbBetaDescription->Name = L"tbBetaDescription";
this->tbBetaDescription->Size = System::Drawing::Size(469, 20);
this->tbBetaDescription->TabIndex = 16;
//
// label8
//
this->label8->AutoSize = true;
this->label8->Location = System::Drawing::Point(10, 217);
this->label8->Name = L"label8";
this->label8->Size = System::Drawing::Size(32, 13);
this->label8->TabIndex = 15;
this->label8->Text = L"Beta:";
//
// tbAmplificationDescription
//
this->tbAmplificationDescription->Location = System::Drawing::Point(10,
this->tbAmplificationDescription->Name = L"tbAmplificationDescription";
this->tbAmplificationDescription->Size = System::Drawing::Size(469,
this->tbAmplificationDescription->TabIndex = 14;
//
// label7
//
this->label7->AutoSize = true;
this->label7->Location = System::Drawing::Point(10, 176);
```

193);
20);

```
this->label7->Name = L"label7";
this->label7->Size = System::Drawing::Size(69, 13);
this->label7->TabIndex = 13;
this->label7->Text = L"Amplification:";
//
// ProjectInfoDlg
//
this->AcceptButton = this->btnOk;
this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
this->ClientSize = System::Drawing::Size(517, 479);
this->Controls->Add(this->groupBox1);
this->Controls->Add(this->label4);
this->Controls->Add(this->label3);
this->Controls->Add(this->label1);
this->Controls->Add(this->tbPrName);
this->Controls->Add(this->cbPrType);
this->Controls->Add(this->dtPrDate);
this->Controls->Add(this->btnOk);
this->FormBorderStyle =
System::Windows::Forms::FormBorderStyle::FixedSingle;
    this->Icon = (cli::safe_cast<System::Drawing::Icon^ >(resources-
>GetObject(L"$this.Icon")));
    this->MaximizeBox = false;
    this->MinimizeBox = false;
    this->Name = L"ProjectInfoDlg";
    this->ShowInTaskbar = false;
    this->StartPosition =
System::Windows::Forms::FormStartPosition::CenterParent;
    this->Text = L"Project Information";
    this->groupBox1->ResumeLayout(false);
    this->groupBox1->PerformLayout();
    this->ResumeLayout(false);
    this->PerformLayout();
    }
#pragma endregion
    public: void getProjectInformation(ProjectInformation^ prInfo){
                    prInfo->ProjectName = tbPrName->Text;
                    prInfo->ProjectDescription = tbPrDescription->Text;
                    prInfo->InputDescription = tbInputDescription->Text;
                    prInfo->OutputDescription = tbOutputDescription->Text;
                            prInfo->AmplificationDescription = tbAmplificationDescription-
>Text;
```

```
    prInfo->BetaDescription = tbBetaDescription->Text;
```

 prInfo->BetaDescription = tbBetaDescription->Text;
 prInfo->DeltaTDescription = tbDeltaTDescription->Text;
 prInfo->DeltaTDescription = tbDeltaTDescription->Text;
 switch (cbPrType->SelectedIndex)
 switch (cbPrType->SelectedIndex)
 {
 {
 case 0:{
 case 0:{
 prInfo->ProjectType = ProjectKind::Enumerative;
 prInfo->ProjectType = ProjectKind::Enumerative;
 break;
 break;
 }
 }
 case 1:{
 case 1:{
 prInfo->ProjectType = ProjectKind::Reconstructive;
 prInfo->ProjectType = ProjectKind::Reconstructive;
 break;
 break;
 }
 }
 }
 }
 prInfo->ProjectDate = dtPrDate->Value;
    ```
    prInfo->ProjectDate = dtPrDate->Value;
```

```
    }
    public: void clearFields(){
                tbAmplificationDescription->Clear();
                tbBetaDescription->Clear();
                tbDeltaTDescription->Clear();
                tbInputDescription->Clear();
                tbOutputDescription->Clear();
                tbPrDescription->Clear();
                tbPrName->Clear();
                dtPrDate->Value = DateTime::Now;
                cbPrType->SelectedIndex=0;
            }
    private: System::Void btnOk_Click(System::Object^ sender, System::EventArgs^ e) {
// this->Close();
    }
};
}
#pragma once
namespace ProjectGUI {
using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;
/// <summary>
/// Summary for AboutDlg
/// </summary>
public ref class AboutDlg : public System::Windows::Forms::Form
{
public:
    AboutDlg(void)
    {
                InitializeComponent();
                //
                //TODO: Add the constructor code here
                //
    }
protected:
        /// <summary>
        /// Clean up any resources being used.
        /// </summary>
        ~AboutDlg()
        {
            if (components)
                {
                    delete components;
                }
        }
private: System::Windows::Forms::Button^ btnOK;
private: System::Windows::Forms::Label^ label1;
private: System::Windows::Forms::PictureBox^ pictureBox1;
private: System::Windows::Forms::Label^ label2;
private: System::Windows::Forms::Label^ label3;
private: System::Windows::Forms::Label^ label4;
```

```
        private: System::Windows::Forms::LinkLabel^ linkLabel1;
        protected:
        protected:
        private:
        /// <summary>
        /// Required designer variable.
        /// </summary>
        System::ComponentModel::Container ^components;
#pragma region Windows Form Designer generated code
            /// <summary>
            /// Required method for Designer support - do not modify
            /// the contents of this method with the code editor.
            /// </summary>
            void InitializeComponent(void)
            {
                            System::ComponentModel::ComponentResourceManager^ resources = (gcnew
System::ComponentModel::ComponentResourceManager(AboutDlg::typeid));
                    this->btnOK = (gcnew System::Windows::Forms::Button());
                            this->label1 = (gcnew System::Windows::Forms::Label());
                            this->pictureBox1 = (gcnew System::Windows::Forms::PictureBox());
                            this->label2 = (gcnew System::Windows::Forms::Label());
                            this->label3 = (gcnew System::Windows::Forms::Label());
                            this->label4 = (gcnew System::Windows::Forms::Label());
                            this->linkLabel1 = (gcnew System::Windows::Forms::LinkLabel());
                            (cli::safe_cast<System::ComponentModel::ISupportInitialize^ >(this-
>pictureBox1))->BeginInit();
                            this->SuspendLayout();
                    //
                    // btnOK
                            //
                            this->btnOK->Anchor = System::Windows::Forms::AnchorStyles::None;
                            this->btnOK->DialogResult = System::Windows::Forms::DialogResult::OK;
                            this->btnOK->Location = System::Drawing::Point(555, 144);
                    this->btnOK->Name = L"btnOK";
                            this->btnOK->Size = System::Drawing::Size(75, 23);
                    this->btnOK->TabIndex = 0;
                    this->btnOK->Text = L"OK";
                    this->btnOK->UseVisualStyleBackColor = true;
                            //
                            // label1
                            //
                            this->label1->Font = (gcnew System::Drawing::Font(L"Microsoft Sans
Serif", 12, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,
                        static_cast<System::Byte>(0)));
                            this->label1->Location = System::Drawing::Point(194, 8);
                            this->label1->Name = L"label1";
                            this->label1->Size = System::Drawing::Size(436, 53);
                            this->label1->TabIndex = 1;
                            this->label1->Text = L"Proof of Concept Application for Non-Algorithmic
Cybernetic Modelling of Living S"
                                    L"ystems";
                            this->label1->TextAlign =
System::Drawing::ContentAlignment::MiddleCenter;
    //
    // pictureBox1
    //
```

this->pictureBox1->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources>GetObject(L"pictureBox1.BackgroundImage")));
this->pictureBox1->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::Zoom;
this->pictureBox1->Location = System::Drawing::Point(2, 8);
this->pictureBox1->Name = L"pictureBox1";
this->pictureBox1->Size = System::Drawing::Size(186, 159);
this->pictureBox1->TabIndex $=2$;
this->pictureBox1->TabStop = false;
//
// label2
//
this->label2->Font = (gcnew System::Drawing::Font(L"Microsoft Sans
Serif", 9, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point, static_castSystem::Byte(0)));
this->label2->Location = System::Drawing::Point(192, 105);
this->label2->Name = L"label2";
this->label2->Size = System::Drawing::Size(439, 39); this->label2->TabIndex = 3; this->label2->Text = L"Copyright: "Lucian Blaga" University of Sibiu,
Faculty of Engineering";
//
// label3
//
this->label3->AutoSize = true;
this->label3->Font = (gcnew System::Drawing::Font(L"Microsoft Sans
Serif", 9, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point, static_castSystem::Byte(0)));
this->label3->Location = System::Drawing::Point(364, 123);
this->label3->Name = L"label3";
this->label3->Size = System::Drawing::Size(84, 15);
this->label3->TabIndex = 4;
this->label3->Text = L"Sibiu, 2013 ";
//
// label4
//
this->label4->AutoSize = true;
this->label4->Font = (gcnew System::Drawing::Font(L"Microsoft Sans
Serif", 8.25F, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point, static_cast<System: :Byte>(0)));
this->label4->Location = System::Drawing::Point(354, 72); this->label4->Name = L"label4";
this->label4->Size = System::Drawing::Size(106, 13);
this->label4->TabIndex = 5;
this->label4->Text = L"by Ralf D. Fabian";
//
// linkLabel1
//
this->linkLabel1->AutoSize = true;
this->linkLabel1->Location = System::Drawing::Point(352, 87);
this->linkLabel1->Name = L"linkLabel1";
this->linkLabel1->Size = System::Drawing::Size(111, 13);
this->linkLabel1->TabIndex $=6$;
this->linkLabel1->TabStop = true;
this->linkLabel1->Text = L"ralf.fabian@ulbsibiu.ro";
//
// AboutDlg
//
this->AcceptButton = this->btnOK;
this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;

```
    this->ClientSize = System::Drawing::Size(638, 172);
    this->Controls->Add(this->linkLabel1);
    this->Controls->Add(this->label4);
    this->Controls->Add(this->label3);
    this->Controls->Add(this->label2);
    this->Controls->Add(this->pictureBox1);
    this->Controls->Add(this->label1);
    this->Controls->Add(this->btnOK);
    this->FormBorderStyle =
System::Windows::Forms::FormBorderStyle::FixedSingle;
    this->Icon = (cli::safe_cast<System::Drawing::Icon^ >(resources-
>GetObject(L"$this.Icon")));
    this->MaximizeBox = false;
    this->MinimizeBox = false;
    this->Name = L"AboutDlg";
    this->ShowInTaskbar = false;
    this->StartPosition =
System::Windows::Forms::FormStartPosition::CenterScreen;
    this->Text = L"About";
    (cli::safe_cast<System::ComponentModel::ISupportInitialize^ >(this-
>pictureBox1))->EndInit();
    this->ResumeLayout(false);
    this->PerformLayout();
    }
#pragma endregion
    };
}
```


[^0]: ${ }^{1}$ My italics RF.

[^1]: ${ }^{2}$ Italics in the quotes are mine, RF.

[^2]: ${ }^{3}$ My italics, RF.

[^3]: ${ }^{4}$ Labelling as "assumptions" such difficult to meet "(pre)conditions" reveals a serious memetic problem: mathematicians "assume their own assumptions" i.e., they "take something for granted" [thefreedictionary.com/assumptions] what is extremely improbable in real world settings.

