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SUMMARY 

 

 

This PhD thesis entitled “Studies and research regarding the use of industrial robots in 

plastic deformation processes” includes: 

− 6 chapters, preceded by an introductory section; 

− 17 tables; 

− 80 equations; 

− 82 figures; 

− 193 references. 

 

The research directions approached in this PhD thesis, that emerged from the analysis and 

synthesis of the current state, are structured in two parts: theoretical research and experimental 

research. 

The theoretical and experimental research was carried out between 2017 and 2022, within 

the Metal Forming Research Centre of the “Lucian Blaga” University of Sibiu. 

 

KEYWORDS: mechanical process, incremental forming, industrial robot, energy 

consumption, finite element analysis, flexible manufacturing system, CAD, CAM, CAE, major 

and minor strain, equivalent Von Mises strain, thickness reduction, forming forces, innovation 

trajectories, geometric dimensioning and tolerancing, KUKA KR 210-2, relative position, 

differential torques, kinematic joint. 
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INTRODUCTION 

Economic and social developments, often linked to the impact of the digital revolution, 

the energy transition and globalisation, are taking place in all fields of activity. Globalisation 

has created new opportunities, posing a challenge for the industry. Industrial companies are 

being forced to improve their production systems, so that they can react quickly and cost-

effectively to unpredictable market conditions. 

On the other hand, the global economic and financial crisis, together with the health 

crisis, forced companies to rethink their production strategies and invest in highly innovative 

processing technologies. 

If until recently the use of an industrial robot on a manufacturing line was only 

accessible to large companies, it is now accessible to organisations of all sizes, including 

SMEs. Given that industrial robots can be programmed to perform dangerous, strenuous 

and/or repetitive tasks with high precision, they are increasingly used in a wide variety of 

industries and applications.  

Subtractive manufacturing, together with metal forming processes, are the most 

widespread and widely used methods of generating the shape of finished parts with 

applications in the automotive, aeronautics, electronics and electrical engineering, consumer 

goods and food industries. 

There was a clear distinction between the two main groups of machining processes, but 

more recently, due to technological developments and economic conditions, research into 

subtractive manufacturing or metal forming processes has greatly extended their area of 

application. 

Given the obvious trend towards product customisation, increasing the flexibility of 

metal forming processes has been an intensely debated topic in industry, in recent years. It is 

well known that conventional sheet-metal forming manufacturing processes allow the 

production of large series and mass-produced parts, providing a high level of production 

automation, but still achieving a low level of flexibility. In the case of small or one-off series 

production of sheet metal parts, the extremely high costs of press or die have a negative 

impact on production.  

When processing a small to medium batch of parts using incremental forming process, 

costs and development time are significantly reduced compared to using conventional sheet-

metal forming manufacturing processes. The process has a high degree of flexibility, since 



 

 

6 

by using different trajectories, but using the same punch and the same active plates, a variety 

of hollow shapes can be obtained. 

Considering the simplicity of the kinematics of the incremental forming process, it can 

be performed on various industrial equipment (specialised machines, CNC milling machine 

tools, industrial robots, etc.). Given the high rigidity, the main equipment used for 

incremental forming is the CNC machine tools. Due to the high flexibility and high travel 

speeds, an alternative to CNC machine tools could be industrial robots. The incremental 

forming process is known to be slow, and the high travel speed of an industrial robot can 

compensate for this disadvantage. Additionally, the high flexibility of an industrial robot 

allows complex shaped parts to be produced with high precision. 

Many robots operate on production lines, where the highest percentage of energy is 

consumed. For instance, in automotive industries, the energy consumption of industrial 

robots is about 8% of the total energy consumption in the production phase [128]. Energy is 

an essential component in the economic development and for the progress of society in 

general. A specific objective in national and European energy efficiency action plans is to 

reduce energy consumption by industrial consumers [186]. 

Therefore, reducing energy consumption has become a major topic for many robot 

manufacturers and for academic research groups. However, reducing the consumption is still 

a challenging task that requires a deep understanding of the kinematic and dynamic behaviour 

of the technological equipment used in the machining processes. 
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TARGET AND PROCEDURE 

Based on the above-mentioned, this PhD thesis focuses on the study of the use of 

industrial robots in an incremental forming process, on improving the energy consumption 

of the robot machining process, as well as on the dimensional and shape accuracy of parts 

processed by developing integrated kinematic and dynamic models. 

The topic of the PhD thesis is part of the interests of the Metal Forming Research Centre 

of the “Lucian Blaga” University of Sibiu and was approached in order to research aspects 

related to the use of serial topology robots as technological equipment in the process of 

single-point incremental forming. 

After a critical analysis of the literature on the incremental forming process and on 

industrial serial robots, the present work focuses on the development of an algorithm for 

establishing the energy consumption during the incremental forming process, using the 

industrial robot KUKA KR 210-2. A reduced energy consumption of the technological 

equipment during the process could lead to an increase in the dimensional and shape accuracy 

of the obtained parts [89, 90]. The steps taken to develop the algorithm are represented 

graphically in the figure below. 

 
 

Fig. I: Block diagram corresponding to the development of the algorithm for establishing energy 

consumption. 

 

In order to achieve the main objective, several research directions have been defined 

and are presented below. 

A first research direction was the development of innovative trajectories that need to 

be followed by the punch in order to generate the final shape of the part. These trajectories 
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were realised in a computer aided manufacturing (CAM) software, SprutCAM. Once the 

trajectories of the punch are established, they will be the input data for the dynamic model 

developed in the thesis, as well as for the finite element method (FEM) analyses. 

The second research direction was both the determination of the forming forces, and 

the determination of minor and major strain and of the thickness reduction during the forming 

process. In order to develop practical, efficient and fast methods to determine the forces that 

occur during the incremental forming process, a model was developed, in order to allow 

process analysis by FEM. The verification of this analysis model using FEM was carried out 

by comparing the results obtained by simulation with those obtained experimentally. The 

verification block diagram of the analysis model using FEM is shown in the figure below. 

 
 

Fig. II: Validation block diagram of the analysis model using FEM. 

 

Once the FEM analysis model is validated, it will allow the determination of forces in 

the machining processes, with no need for experimental determinations. Thus, by modifying 

the process characteristics (geometry model, material constants, user-imposed trajectories), 

the values of the forming forces can be determined based on the FEM simulation. These 

values will be used as input data in the dynamic model of the KUKA KR 210-2 robot used 

in the incremental forming process. 

Once the trajectories to be traversed by the punch in order to obtain the final shape of 

the part and the forces during the process have been obtained, the dynamic model of the entire 
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incremental forming process using the robot was created in the Matlab/Simulink - Simscape-

Multibody environment.  

Within the developed dynamic model, by including the user-imposed trajectory and the 

values of the forming forces, the values of the resisting torques of the kinematic joint of the 

robot during the incremental forming process can be determined. For the same imposed 

trajectory, by choosing a robot configuration or by changing the position of the metal sheet 

in the robot workspace, reduced resisting torques can be obtained. Achieving low resisting 

torques leads to low energy consumption. 

To develop the dynamic model of the robot, a first step was to solve the kinematic 

problem of the KUKA KR 210-2 serial topology robot. Solving the kinematic problem offers 

the possibility to drive the robot along a user-imposed trajectory. Addressing the above-

mentioned problem starts by solving the inverse kinematic problem. The inverse kinematic 

problem is concerned with determining the relative positions between the kinematic elements 

of the robot, if the imposed trajectory of the punch is known. Solving inverse kinematics is 

usually a difficult step that requires in-depth analysis. In the present case, for the robot under 

study, the analytical method was used as a method for solving inverse kinematics. The next 

step in creating the dynamic model was to develop the virtual model of the robot in the 

Simulink-Simscape-Multibody environment. The development of the virtual model of the 

robot in Simulink-Simscape-Multibody was achieved by importing the three-dimensional 

(3D) model of the KUKA KR 210-2 robot from a computer-aided design (CAD) software, 

into Simulink. The CAD model of the robot was taken from the KUKA industrial robot 

manufacturer’s website, observing the mechanical characteristics of the real KUKA KR 210-

2 robot. These characteristics relate to the mass of moving elements, moments of inertia, 

element lengths and centres of gravity. By importing the CAD model into Simulink-

Simscape, all the mechanical characteristics of the robot were imported: element dimensions, 

coordinate systems, vector relationships between elements, their mass and volume, 

gravitational forces and moments of inertia. Various simulations of the incremental forming 

process were performed to determine the resisting torques. As a result of these simulations, 

the resistive torques of the kinematic joint of the KUKA KR 210-2 robot during the 

incremental forming process were determined. However, since not all the mechanical 

properties of the robot structure are known precisely, to overcome this impediment, it was 

decided to determine the difference between the values of the resistive torques measured 

under load and measured at idle. Thus, by using this calculation, only the dynamic effects 

due to the process, additional moments were considered, removing from the system the 

influence of the centre of mass and the moment of inertia of the robotic structure, which are 

not precisely known. 

The fourth research direction was to carry out research on improving the dimensional 

and geometric (form) accuracy of the obtained parts by reducing the loads on the robotic 
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structure. Trajectory planning is one of the important aspects of control, representing a 

fundamental problem in robotics. A well-planned trajectory guarantees good path following 

and places less stress on the mechanical structure of the robot, so that the quality of the 

machined surfaces will not be affected. Based on the literature survey, it was observed that 

little attention was paid to the variant when the axis of symmetry of the punch is kept 

perpendicular to the formed surface of the blank throughout the forming process. Thus, a set 

of experimental determinations was carried out, in order to determine the influence of process 

parameters on the dimensional and shape accuracy of formed parts. 

A final step of the research was the analysis of the energy consumption during the 

single-point incremental forming process. This energy analysis is based on the measurement 

of the electric power consumed by the electric motors in each kinematic joint. Acquiring the 

power in the robot joints made possible the analysis of the degree of load for each kinematic 

joint, respectively for each electric motor. The evolution of the power was used to 

qualitatively validate the values of the torques in the kinematic joints determined by 

simulation. Finally, the influence of the position of the workpiece in the robot workspace on 

the values of the torques in the kinematic joint was studied. This analysis can be used further 

to optimise the energy consumption of machining processes. 
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GENERAL CONCLUSIONS, PERSONAL CONTRIBUTIONS 

AND FUTURE RESEARCH DIRECTIONS 

1.1. General conclusions 

The present work aimed to study the use of industrial robots in an incremental forming 

process, the influence of their use on the improvement of energy consumption in the machining 

process, as well as on the dimensional and shape accuracy of the parts, by reducing the dynamic 

resisting torque on the robotic structure. 

Following the conclusions emerging from the analysis of the state of the art, research 

directions were chosen, and theoretical and experimental research was initiated. 

In order to carry out the theoretical and experimental research by incremental forming 

process, a 0.67 mm thick of DC04 metal sheet was chosen. The shape of the formed parts was 

a truncated cone type in which three representative geometrical and process parameters were 

varied: the wall angle, the incremental step and the type of trajectory used. Four types of 

trajectories were used to generate the shape of the parts: circular and spiral, with fixed axis and 

tilted axis variants for each of them.  

Several specific software packages were used for the theoretical and experimental 

research:  

− Bluehill 2 for processing and interpreting the results obtained from the uniaxial 

tensile test; 

− SprutCAM for generating commands for the movement of the punch along the paths 

that are necessary to obtain the final shape of the part (code for controlling robot movements); 

− ANSYS LS-DYNA for numerical FEM analysis of the incremental forming process; 

− Catman for acquiring and analysing the values of the three components (Fx, Fy, Fz) 

of the forming force; 

− GOM Correlate for visualisation and evaluation of the data from deformation 

measuring performed with the ARAMIS optical system; 

− GOM Inspect for visualisation and evaluation of data obtained from measurements 

with the optical 3D measurement system - ATOS Core; 

− MATLAB - Simulink for making and simulating the kinematic and dynamic models 

of the KUKA KR 210-2 robot. 
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The theoretical and experimental research carried throughout the work allowed the 

following conclusions to be drawn: 

• from the point of view of the technological equipment used for a flexible 

configuration that meets the requirements of the industrial environment in terms of time, 

performance and production costs, in the case of the incremental forming process, a good 

compromise could be the use of industrial robots; 

• the forces developed during incremental forming processes is a subject of major 

interest in research, because of their influence on process limitations (especially in terms of the 

accuracy of machined parts), and their values have a direct effect on energy consumption during 

the forming process; 

• due to the possibility of vertically positioning the sheet metal that needs to be 

processed by incremental forming with industrial robots, the deformation behaviour of the parts 

can be evaluated online, by measuring the deformations of the processed material during 

processing, by means of an optical measuring system; 

• experimentally obtained results of the values and distributions of the major strain ε1, 

minor strain ε2, Von Mises equivalent strain εVM, and thickness reduction were similar to those 

obtained by numerical FEM simulation, which led to the validation of the developed FEM 

analysis model; 

• after comparing the experimental results with the theoretical ones (resulting from the 

numerical simulation) of the variation of forming forces, both in terms of time evolution and of 

the maximum and minimum values obtained, a good correspondence was observed; 

• after comparing the two types of trajectories, with fixed axis and with inclined axis 

of the end effector (punch), it is noted that the processing with trajectories with fixed axis, 

keeping the axis of the punch perpendicular to the initial plane of the blank, leads to an even 

distribution in terms of strain and thickness reduction; 

• based on the analysis of the results obtained from the experimental determinations, 

from the point of view of dimensional and geometrical (shape) accuracy, the forming strategy 

with trajectories having the axis of the punch oriented perpendicular to the forming surface of 

the blank (inclined axis), allows obtaining parts with a real profile closer to the theoretical 

profile, being superior to trajectories with fixed axis; 

• the measurement results validated the hypothesis that forming using inclined axis 

trajectories represents the best compromise between maximum value and even distribution of 

strain and thickness reduction; 
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• decreasing the incremental step of the punch leads to values closer to the standard 

profile in terms of level difference at the bottom of the part; 

• from the point of view of the forming force, it was observed that a significant 

influence on it, after the three directions, in the incremental forming process, is the forming 

strategy (in terms of the trajectories used), followed by the incremental step and the wall angle; 

• the development of the dynamic model of the KUKA KR 210-2 robot has led to the 

possibility of determining the resistance torques of the kinematic joints of the robot during the 

incremental forming process; 

• the analysis of energy consumption during the single-point incremental forming 

process was carried out qualitatively, based on the comparison of the evolution of the currents 

in relation to the torques in the kinematic joint calculated by simulation; 

• it was observed that the variation in time of the differential torques in the joints and 

the currents consumed in the kinematic joint has a similar evolution, qualitatively speaking; 

• with regard to the position of the metal sheet in the robot workspace (repositioning, 

reorientation of the metal sheet according to the robot base, and change in the trajectories to be 

taken by the punch in order to produce a part), both the resistive torques and the currents become 

smaller as the distance between the metal sheet and the robot decreases; 

• the minimum value of the distance between the robot and the part is given by the 

functional limits of the forming system; 

• it was not possible to perform a quantitative analysis to validate the calculated values 

of the torques in the kinematic joint based on the measured currents, given the unknown values 

of the moments of inertia of the structural connecting elements (robot arms) and the robot 

compliance, which are extremely difficult to be determined during the robot operating phase; 

• the developed and validated model allows the user to evaluate the influence of the 

position of the workpiece on the values of the torques in the kinematic joint; 

• by integrating the trajectories obtained based on the CAM model, and the forming 

forces, obtained based of the CAE model, into the MATLAB/Simulink-Simscape model of the 

robotic structure, the user will be able to calculate/control the movement of the robotic structure, 

in direct and inverse kinematics, as well as the dynamic stresses on it. 
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1.2. Personal contributions 

Throughout this PhD thesis, a number of contributions was made to the study regarding 

the use of industrial robots in plastic forming processes, the most significant of which are listed 

below. 

 

In terms of theoretical research: 

• an experimental stand has been designed and developed, allowing the use of the 

industrial robot in the incremental forming process; 

• data acquisition systems and computer-aided image acquisition and processing 

systems have been adapted, calibrated and implemented for the studied process; 

• programs for the acquisition, filtering and processing of experimental data have been 

developed; 

• in order to determine the mechanical characteristics, the elastic-plastic behaviour of 

the material used (DC04 steel) was determined by uniaxial tensile test; 

• truncated cone shaped parts were produced, using various geometrical and process 

parameters; 

• the values and distributions of strain and of thickness reduction of the metal sheet 

were experimentally determined; 

• the results obtained validated the finite element model developed; 

• the influence of some input, geometric and process parameters on the quantities 

characterising the behaviour in incremental forming was determined; 

• the influence of the variation mode of forming forces on the final accuracy of the part 

for various trajectories and technological parameters was determined; 

• the dimensional and shape accuracy of the formed parts was evaluated, the results 

obtained indicating that the machining strategy with trajectories having the axis of the punch 

oriented perpendicular to the surface of the part wall (inclined axis) allows obtaining parts with 

a real profile closer to the theoretical profile, being superior to trajectories with fixed axis; 

• a methodology for the analysis of energy consumption during the single-point 

incremental forming process has been proposed and validated, allowing the user to evaluate the 

influence of the position of the workpiece in the robot workspace on the values of the torques 

in the kinematic joint; 

• research has been carried out on the influence of the relative position of the metal 

sheet with respect to the machining system on energy consumption, and it has been noted that 
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both the resistive torques and the currents become smaller as the distance between the 

workpiece and the robot decreases. 

 

1.3. Future research directions 

Considering the results obtained in this PhD thesis, there is certainly scope for further 

research in the following directions: 

• evaluation of surface quality (roughness) of formed parts; 

• making complex shaped parts with trajectories having the axis of symmetry of the 

punch oriented perpendicular to the surface of the part wall (inclined axis); 

• development of CAM software programs that take into account the specific features 

of incremental forming process; 

• performing a quantitative analysis to validate the calculated values of the torques in 

the kinematic joint based on the measured currents.
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