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1 Introduction 

The main way to master the complexity and heterogeneity of the systems involved in all areas of 
activity today is modeling. Conceptual modeling methods that involve the representation of static and 
dynamic entities of systems support communication between users and developers and facilitate 
efficient mastery of the complexity and heterogeneity of these systems. Thus, concepts such as internet 
of things, digital twins, smart factories, smart products, cyber-physical systems, are becoming 
increasingly common concepts in modeling processes. For example, specifying a flexible 
manufacturing process involves a variety of systems such as robots, manipulators, software 
components, control elements, and so on. The result of the aggregation of these components is a 
Cyber-Physical Production Systems (CPPS) [Muller2018]. 

By conceptual modeling of a system, we understand the process of thinking and reasoning about a 
system in order to build a model as well as the process of specifying the resulting model. Modeling is 
a method of knowing and reflecting on a system in order to replace it with a model more accessible to 
study. The resulting model must provide reasoning, verification, validation, simulation, and executable 
code generation mechanisms [Fill2013]. 

The construction of a model also involves specifying it in a formalism so that it can be used in 
communication with others or to perform experiments. Building a model usually begins with an 
informal level useful for discussion and confrontation of ideas, then goes through a semi-formal phase 
and reaches a formal level, i.e., executable. In general, the formalism of specifying a model influences 
the way a system is perceived and therefore the way it is modeled. 

The idea is validated that diagrammatic languages possess important intuitive features and are 
therefore best suited for modeling phenomena and the relationships between them [Wolter2015]. 
Although there are many such languages, the diversity of systems that need to be modeled today 
makes them often too general to specify models in certain areas. Therefore, the implementation of 
domain-specific modeling languages (DSML) [Fowler2010] has become an integral part of the 
modeling process. 

A Domain-Specific Language (DSL) is a language with syntax and semantics based on abstractions 
aligned to a particular domain of knowledge in order to allow the optimal specification of the 
problems in that domain. 

In the context of Model-Driven Development (MDD), the DSLs used to specify models are called 
Domain-Specific Modeling Language (DSML) and play a fundamental role. The models specified in 
this way are primary artifacts on the basis of which executable or interpretable models can be 
generated. 

MDD's main objective is to move the software development effort from programming to modeling. 
This involves, among other things, the automatic generation of executable code based on information 
extracted from models [Rumpe2017]. But the executable code is a precise, complete and unambiguous 
specification, i.e., a formal specification. Therefore, this desire imposes higher requirements for the 
accuracy of the model specifications, because an error in the design of a model could be discovered 
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only after it already produces large cumulative losses. This inevitably leads to the need to build formal 
models that can be theoretically verified. 

To formally specify a model, we need a formal language, i.e., a language endowed with precise and 
unambiguous syntax and semantics. It is not enough for the specification language to be formal for the 
models specified with that language to be formal in turn. Rigorous language can be used to make 
inaccurate specifications, but for the formal specification of models an essential condition is that the 
language has to be formal [Rumpe2016]. 

The fundamental concepts on which this work focuses are: multi-level modeling, modeling method 
and the MM-DSL language designed to specify the concept of modeling method. To these are added 
some mechanisms from the category theory that serve to formalize the concepts of multi-level 
modeling and modeling method. This work contributes, among other things, to the compatibility of the 
mechanisms of category theory with the concepts involved in the modeling activity. 

The use of several levels of models in the sense of specifying models in terms of other models has a 
long history. Multi-level modeling seems to be the best way to address the reduction of model 
complexity by abstracting and distributing this complexity to multiple levels. This way of modeling is 
old but it started to be very important with the increasing complexity of modeled systems 
[Atkinson2001] [Atkinson2008] [Lara2003] [Lara2010]. 

A successful approach is the architecture introduced by OMG which classifies models into four layers 
marked with M0, M1, M2 and M3 [OMG_MDA2014]. Another important approach to multi-level 
modeling is based on the concept of clabject [Atkinson1997], implemented in an instrument called 
Melanee [Atkinson2016]. 

In general, for the development of a domain, it is necessary to define some adequate concepts that will 
concentrate the effort of an important number of researchers that will contribute to the improvement of 
the respective concept. One such concept is the modeling method introduced by Karagiannis and Kühn 
[Karagiannis2002]. 

The concept of modeling method integrates three essential components of a modeling tool, namely the 
modeling language, algorithms and mechanisms and the modeling procedure. With these components 
implemented, according to the modeling procedure, any model can be specified using the modeling 
language and can be validated, analyzed, executed or simulated using algorithms and mechanisms. 

An essential condition for a language to be endowed with formal semantics is that the syntax has to be 
precise and unambiguous. Most of the time the language associated with a modeling method is a 
graphic language. If in the case of textual languages there is a strong specification mechanism that 
offers efficient algorithms for analysis and translation, namely context-free generative grammar, in the 
case of graphic languages things are far from the same. At first glance it would seem that there is no 
difference between textual and graphic languages other than the lexical notation of atoms. But there is 
another detail related to the ordering of these atoms in syntactic constructions. If in the case of textual 
languages each lexical atom can have at most two neighboring atoms, in the case of graphic languages 
each atom can interact with an unlimited number of atoms. Hence the benefit related to increased 
expressiveness of these languages but also a big difficulty related to syntactic analysis. 

An important and natural direction for specifying graphic languages is to generalize the mechanisms 
used in the case of textual languages to graphic languages. Thus, the productions of Chomsky 



5 

grammar were replaced with graph transformations. The result is a concept as elegant as textual 
languages with mathematical support, but no sufficiently efficient analysis algorithms have yet been 
found to be used in practice similarly to Chomsky grammar. For this reason, the syntax of a modeling 
language is usually specified by a metamodel or using a mathematical notation. We will use in this 
work the categorical sketch to specify the syntax of the graphic language. We will, however, use graph 
transformations to specify the behavioral syntax of a model. In this case we do not need a syntactic 
analysis but only a matching of the behavioral rules in a model that can be done efficiently by linking 
these graph transformations, at the metamodel level, to a certain type of elements. Thus, we specify 
behavioral syntax by associating graph transformations with behavioral action signatures. 

If the language syntax is formal then a semantic mapping to a domain with well-known semantics 
assigns an unambiguous meaning to each syntactic construction specified in the modeling language. 
Both the static dimension and the behavioral dimension of a model must be endowed with semantics. 
Thus, the semantics of a modeling language have two dimensions, a static dimension and a behavioral 
dimension. 

The static dimension of semantics in turn has two components, namely a component that endows the 
elements of the language with types and a component that maps the structures of the model to 
structures with a well-known semantics. 

The behavioral dimension of semantics is most often defined by mapping the domain-specific 
execution semantics to the semantics of some languages with a formal semantics such as Petri Nets or 
to certain algebraic specifications. In this work we have specified behavioral semantics through the 
semantics of graph transformations, which can modify the graph structure of the model, associated 
with behavioral actions that are mathematical functions and can modify the attributes of the model. 
These two mechanisms can ensure the transition of the model from one state to another. 

Notation refers to the graphic elements of the language and that makes graphic languages more 
intuitive than textual languages. By notation, geometric figures or icons play the role of lexical atoms 
in textual languages. Although, in general, the number of graphic lexical atoms is smaller than the 
number of lexical atoms in textual languages, the more complex relationships between them offer a 
greater expressiveness of the language. 

The notation can be static or dynamic. The static notation is a fixed notation for language elements in 
the sense that it does not change during model execution. In this case the transition of the model from 
one state to another is reflected only by changing the values of the attributes. The static notation is 
specific to most modeling languages. Dynamic notation assumes that the modeling language provides 
the facility to dynamically change the notation, depending on the state of the model or the value of the 
attributes of a model in a certain state. 

A modeling method must provide facilities for analysis, verification, validation, transformation, 
querying and simulation of models. Behind these facilities are mechanisms and algorithms that are 
based on universal properties of models in a particular domain. In our approach, category theory offers 
a series of universal constructions that can be an important source of generic algorithms. 

As we have already mentioned, the development of DSMLs becomes an integral part of the modeling 
process. These DSMLs are, in general, graphical languages adapted to specify models in a particular 
domain. The first phase of this process is the specification and implementation of the modeling 
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method over a metamodeling platform. The next step is to begin specifying the models over this 
specific modeling tool. If we are in a deadlock, meaning that the chosen metamodeling platform does 
not give us enough support to be able to specify the domain-specific models, we will have to take it 
from the beginning by creating a specific modeling tool over another metamodeling platform. If this 
specific modeling tool were independent of the platform, we could avoid this extra work. This is 
solved by the MM-DSL language that is thought of as an alternative to building a platform-
independent Modeling Method. Platform independence is accomplished by translators specific to each 
metamodeling platform. The MM-DSL language was specified at the University of Vienna 
[Karagiannis2016] [Visic2016] and the static part of describing the meta-models was implemented. 
We have implemented the dynamic part of the language, i.e., the one that offers facilities for 
specifying computational algorithms. 

The process of moving from writing code to writing models inevitably leads to the need to build 
formal models that can be theoretically verified. Category theory provides a language for the precise 
description of models, a certain type of model thinking called thinking on arrows and a set of tools in 
accordance with the design models and structural principles in MDE practice. 

Category theory offers both, a language, and a set of conceptual tools to efficiently handle models. All 
mathematical models can be organized according to their structure by specific categories, and such 
specific categories can in turn be organized into a more general category that leads to the integration 
of several models. 

An important aspect of modeling is building complex functions from a given set of simple functions, 
using different operations on functions such as composition and repeat composition. Category theory 
is exactly the right algebra for such constructions. 

The categorical models are a direct support for the modeling and precise mathematical classification of 
the structures involved in the modeling of the systems as well as of the transformations and operations 
on the models conveyed in the MDE practice. The operations of composing, transforming, 
instantiating, synchronizing, etc. are executions of the categorical specifications [Diskin2012]. 

MDE focuses essentially on the correct structuring of models into submodels, which in turn are further 
structured similarly. This type of modeling of modern systems requires inter-structural relationships 
and operations that are not offered by classical mathematics. In the approach of MDE, the operations 
and relations on the mathematical objects, offered by the category theory, are more important than 
their internal structure. Just as more models can be composed, through certain specific interactions, to 
form more complex models, similarly a set of categories can be composed, through specific 
morphisms, to form a more complex category and therefore both are holistic structures. 

In this work we specified both the concept of modeling method and that of multi-level modeling in the 
language of the category. Important parts of this thesis were published in [Craciunean2018] 
[Craciunean2019] [Craciunean2019A] [Craciunean2019B] [Craciunean2019C] [Craciunean2019D].  

1.1 Problem Statement 

The modeling process involves specifying a model, which mimics a real system, from a certain point 
of view, with a certain degree of fidelity and is able to interact with other real systems or other models 
in a similar way to the real system. For example, the model of a Cyber-Physical Production System 
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(CPPS) involves its interaction with a variety of real systems, such as robots, manipulators, and 
software models, such as control components. Also, software models built into a car must interact with 
the mechanical components of the car or with other software components of the same car or other cars. 

Therefore, the modeling process has as a starting point the real world systems and as an end point the 
executable models of these systems. The transition from real world systems to executable models is a 
complex process, which involves passing the model through at least three distinct forms: conceptual 
model, formal model and executable model. 

The executable model is specified in a language that can be interpreted or executed by a machine. 

The formal model must be specified precisely in a formal language, i.e., a language with precise 
syntactic rules, with precise semantics and with appropriate rules for processing information from the 
domain of use. In general, writing a model in a formal language requires a long experience in 
specifying formal models and a significant effort from the modeler side. Avoiding this shortcoming 
can be done only by using a language specific to the modeler's domain of expertise. 

The conceptual model is built through the contribution of all parties involved in the modeling process 
and therefore requires a specification understood by all these parties. 

For the specification of a conceptual model to be effective, it needs to be compatible with the 
modeling tool in which the formal specification is made. This compatibility refers to the existence of a 
morphism between the conceptual model and the formal model. The lack of compatibility between the 
two models involves several iterations in the design cycle and therefore leads to increased design and 
development costs. 

For the specification of a conceptual model to be efficient and the model to be understood by all 
participants in the development process, the formal model, accordingly, must benefit from a modeling 
tool appropriate to the specific modeling domain. 

The diversity and heterogeneity of real systems makes the development of modeling tools and domain 
specific modeling languages, appropriate, to become a central problem of modeling. 

The modeling language must allow, with minimal effort, the precise and intuitive specification of 
concepts and models in the domain of modeling. In order to fulfill this desideratum such a formal 
language must have certain natural techniques of modeling and analysis specific to the domain and as 
a result it will have a limited domain of applicability. 

It is obvious the advantage brought by the domain specific modeling tools endowed with domain 
specific modeling languages (DSML), which bring an efficiency leap comparable to the efficiency 
leap brought, in programming, by the transition from assembly languages to high-level languages. 
This advantage derives, in particular, from the fact that a domain specific modeling language is 
designed for modelers in the domain, not for machines or programmers. But building domain specific 
tools involves costs. Therefore, it is natural that we want to build an efficient, fast and with minimal 
costs domain specific modeling tool. 

Following the research carried out in the literature from the domain of metamodeling mechanisms and 
technologies that support the formalization and implementation of modeling methods, we found that 
concerns in this domain are quite rare. 
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The main emphasis, in the specialized literature, is on the study of existing languages, on the extension 
of existing languages to cover new needs and on the construction of new languages and not, enough, 
on the knowledge, mechanisms and tools to facilitate the optimal development of domain specific 
modeling tools. Concerns about the mechanisms of constructing formal modeling languages specific 
to the diagrammatic domain for the precise, systematic and incremental specification of complex 
systems are difficult to find. 

Another major problem related to the implementation of modeling tools is the lack of portability 
between different metamodeling platforms. After choosing a metamodeling tool and implementing the 
concept of modeling method on this the next step is to start specifying the concrete models with this 
specific modeling tool. If the chosen metamodeling platform does not provide us with enough support 
to be able to efficiently specify the models, we will have to start from the beginning by implementing 
the modeling method concept over another metamodeling platform. If this specific modeling tool were 
platform independent, we could avoid this additional work. 

If we refer to mathematical formalization, the development of modeling tools is a more experimental 
and intuitive activity, based on surprisingly weak semantic foundations. The formalization in 
mathematical language of the models makes them become mathematical objects with adequate 
properties for analysis and verification. The language offered by category theory has an implicit 
syntax and an implicit semantics and offers generic algorithms that can be implemented at the 
metamodel level. Although it is the most expressive mathematical language for specifying models, it is 
rarely used. 

Therefore, the importance of developing domain specific modeling tools associated with the lack of 
satisfactory concerns in the domain, the remarkable expressiveness of categorical mechanisms in 
specifying models associated with their insufficient use in the mathematical formalization of 
metamodels, platform dependence in implementing modeling tools, make up the main motivation of 
this thesis. 

In this idea we aim to answer the general research question: 

RQ. What are the theoretical and practical mechanisms that ensure the optimal methodological 
construction of modeling tools? 

In order to systematize the answer to this general question, we will break it down into some more 
precise questions that will emphasize the basic landmarks of this thesis. 

RQ1. What are the appropriate mathematical mechanisms for a formalization of models compatible 
with metamodeling tools? 

If the programming effort involves writing classes or program modules in the case of modeling the 
main problem becomes the composition of these components, in accordance with the complex 
interactions between the concepts they represent. 

The software components that are composed in a model represent real world concepts and therefore 
are not just nodes in a graph but are encapsulated algebraic structures and the modeling focuses on 
operations and relationships on structures considered holistic entities. 

Classical mathematics provides mechanisms for modeling atomic concepts but does not provide 
adequate mechanisms for specifying inter-structural relationships and operations and reasoning on 
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them, which are essential in specifying models. Category theory offers such mechanisms, moreover 
these mechanisms are the very essence of category theory. Arrow thinking specific to category theory 
is appropriate to model-specific inter-structural relationships. These arrows cover all types of 
interactions between model structures from simple m to n relations specific to ER models to complex 
functional relationships that transfer the properties of one structure in terms of another structure. 

RQ2. What are the appropriate mathematical mechanisms for specifying the syntax of diagrammatic 
languages? 

The design and implementation of domain specific modeling tools has nowadays become an integral 
stage of the modeling process in accordance with the MDE concept. Domain specific modeling 
languages (DSML) integrated into these modeling tools are in most cases diagrammatic languages 
because they are more intuitive. If in the case of textual languages we have context free grammars as a 
standard mechanism for specifying them with powerful algorithms for their lexical and syntactic 
analysis, in the case of diagrammatic languages things are still in the phase of searching for equivalent 
mechanisms and algorithms. 

A diagrammatic model has two dimensions; a static dimension and a behavioral dimension. Therefore, 
specifying the syntax of a diagrammatic modeling language involves specifying the syntax of the two 
dimensions. 

We believe that the categorical sketch is an appropriate mechanism for specifying the syntax of the 
static dimension of a model. A categorical sketch is a tuple consisting of a graph and a set of 
constraints on the components of the graph. 

To define the syntax of the behavioral dimension we introduced the notion of behavioral rule that 
composes a graph transformation with a behavioral action. Graph transformations specify local 
transformations of graphs and behavioral actions are functions that change the values of the attributes 
associated with the graph components of the model. 

RQ3. What are the appropriate mathematical mechanisms for specifying the semantics of 
diagrammatic languages at the metamodel level? 

The static semantics of a model will be defined by mapping the attributes associated with the model 
concepts to value domains as well as by mapping the structure of the model to known structures. 

As we have seen, a behavioral rule is an aggregation between a graph transformation and a behavioral 
action. We defined the behavioral semantics of diagrammatic models by mapping the behavioral rules 
to algorithms and mechanisms, implemented at the metamodel level, which execute graph 
transformations and actions. The graph transformation has, in our approach, two functions, namely, 
locating the area of definition of the behavioral action and modifying the graph structure of the model. 
In category theory, the graph transformation is obtained by a double pushout. 

RQ4. How can the execution and simulation of a model with categorical mechanisms be specified? 

We defined the behavioral semantics of the diagrammatic models by behavioral rules defined at the 
metamodel level. We defined the states of a model as instances of the static model and the transitions 
as behavioral rules. The set of instances of a static model together with the set of behavioral rules that 
can be defined between these instances form a category. We called this category: the category of 
instances and behavioral transformation (CIBT). This category defines the possible evolution of the 
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model during the simulation or execution. Each instance represents a possible state of the execution 
process corresponding to the model. Each state is characterized, therefore, by the values of the 
attributes associated with the components of the model and by the graph structure of the instance in 
question. The result is a process represented by a transition system that represents the real behavior of 
the modeled system [Milner2009] [Aalst2011] [Weske2012]. 

RQ5. How can the design of modeling tools be methodically approached? 

One of the main objectives of this thesis is to identify an optimal flow for the design and 
implementation of modeling tools. This approach involves sequencing the construction phases of the 
modeling tool in order to distribute the complexity of the development process in relatively easy to 
manage steps. The development process is supported by the concept of modeling method on the 
methodical dimension and by a metamodeling tool on the technological dimension. In our approach 
the central element of the development process is the concept of modeling method introduced by 
Karagiannis and Kühn [Karagiannis2002]. 

The concept of modeling method integrates three essential components of a modeling tool, namely the 
modeling language, the algorithms and the mechanisms and the modeling procedure. With these 
components implemented, a modeling tool allows the specification of models, from the modeling 
domain, in the modeling language according to the modeling procedure, and can be validated, 
analyzed, executed or simulated using algorithms and mechanisms. 

RQ6. How can the components of the concept of modeling method be specified in the context of 
categorical mechanisms? 

The main components of the modeling method concept are the modeling language, algorithms and 
mechanisms and the modeling procedure. The purpose of these components is to allow the efficient 
specification and manipulation of concepts in the modeling domain. For the successful implementation 
of an instance of the concept of modeling method it is not enough for these components to be specified 
informally, but a precise formal specification of them is needed. 

The formalization of a language involves the formal specification of the three essential components of 
the definition of a language, namely syntax, semantic domain and semantic mapping [Rumpe2016]. 
For the formal specification of these components, we need a formal language. In this work we use the 
language provided by category theory for the formal specification of a diagrammatic language. 

The design of a DSML must include mechanisms for specifying the two dimensions of a model, 
namely the static dimension and the behavioral dimension. Both dimensions must be specified by 
aggregating the same atomic concepts that represent the concepts in the modeling domain. The 
semantics of a model is defined by mapping syntactic constructions to an appropriate semantic domain 
that gives meaning to these models. 

To specify the syntax of the static dimension of visual models we use the categorical sketch, which 
offers a formal declarative language endowed with an implicit semantics. Therefore, the mechanism 
for specifying the static dimension of a visual modeling language is also categorical. The constraints 
associated with a categorical sketch allow the construction of generic algorithms at the metamodel 
level to verify the syntactic correctness of the models. 
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The semantics of a static model is defined by mapping the attributes associated with its atomic 
components to corresponding data domains and by mapping graph structures to structures with well-
defined semantics. A static model represents a state for the behavioral dimension. 

To specify the syntax of the behavioral dimension of a visual model we use the concept of behavioral 
rule which is an association between a graph transformation and a behavioral action. The semantics of 
graph transformations can be defined by a double pushout that can change the graph structure of the 
static model transforming it into another static model, and the semantics of behavioral actions through 
functions that calculate the attribute values of the new static model starting from the attribute values of 
the old static model. 

Mechanisms and algorithms are functional components for both the modeling language and the 
modeling procedure. Generic components are functional resources for all implementations of 
modeling methods, specific components only for certain implementations, and hybrid components are 
generic, but can be configured for multiple implementations [Karagiannis2016]. One of the great 
advantages of categorical modeling is that category theory is an important resource of generic 
components. Graphs, graph homomorphisms, categories, functors, diagrams, natural transformations, 
cones, cocones, boundaries, colimits are just some of these constructions with a generic character and 
which can be implemented as mechanisms or algorithms, independent of any diagrammatic model that 
uses them. 

RQ7. How can we achieve the portability of metamodels from one metamodeling platform to another? 

If after implementing the modeling method concept, for some reason, the metamodeling platform 
needs to be changed, due to the lack of portability between various platforms, we lose all the work for 
implementation and we have to start from the beginning by implementing the modeling method 
concept on the new platform. If this specific modeling tool were independent of the platform, we could 
avoid this extra work. This is solved by the Modeling Method Domain-Specific Language (MM-DSL) 
that is thought of as an alternative to building a platform-independent Modeling Method. Platform 
independence is accomplished by translators specific to each metamodeling platform. 

The MM-DSL language was designed and specified at the University of Vienna and includes most 
relevant metamodeling concepts [Visic2016]. The language contains a subset of descriptive 
instructions that allow the definition of the components of a modeling method and a subset of 
calculation and flow control instructions that allow the specification of algorithms. The descriptive 
part of the language was implemented in the paper [Visic2016] and in this work we completed the 
implementation of the language with the calculation and control part, i.e., the language constructions 
that allow the specification of algorithms. 

RQ8. How can the mechanisms presented in this work be assembled for the implementation of a 
concrete modeling tool? 

Modeling certain aspects of a system's behavior through processes is a common approach in modeling 
practice [Aalst2011]. To demonstrate how the mechanisms presented in this work can be assembled in 
the process of implementing a modeling tool we have presented two possible implementations for two 
modeling tools, both appropriate for specifying processes, but with different degrees of specificity. 

For example, we chose a modeling method with a well-known language: Petri Nets and a specific 
language for modeling manufacturing processes. In both cases we used the language provided by the 
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category theory for the mathematical specification of the components of the modeling method concept 
and then we implemented these examples using as support the MM-DSL language with translation on 
the ADOxx platform. 

1.2 Outline and contributions 

Section 2 of the work presents the theoretical and conceptual foundations specific to the modeling 
domain and a brief analysis of the different existing metamodeling technologies. This section is the 
result of the systematic study of the mechanisms and knowledge in the domain of research and aims to 
introduce a common understanding of the concepts of metamodeling, conceptual modeling and model-
based development. The content of this section represents the theoretical and instrumental support for 
the identification and motivation of our research topic as well as for the integration of the research 
results in this research domain. 

Section 3 introduces the notions of model and metamodel by combining the concept of static model, 
which represents a state of the model, with the notion of behavioral transformation and assembles 
these concepts into a multi-level model.  

This section contributes to the concepts of multi-level modeling, multi-level modeling hierarchy, 
simulation and co-simulation with support from category theory mechanisms. 

We have defined a static model as the image of a functor defined on a categorical sketch, called a 
metamodel, which respects the constraints imposed and which represents a state of the model. In our 
approach (section 3.3.) a state of a model is represented by a static structure and a set of values of the 
attributes. 

To define the behavior of a model (section 3.4.) we introduced the notion of behavioral transformation 
that transforms the structure of the model and the attributes within the limit allowed by the attached 
constraints. These transformation rules act locally, meaning that they modify several local substates 
according to certain preconditions. A behavioral transformation is a general description of the local 
changes that can occur in a model and determines its behavior according to the evolution of the 
modeled system. In principle, a behavioral rule consists in replacing a part of the model with another 
part of the construction as well as calculating or recalculating the values of some attributes, in 
compliance with the constraints imposed by the metamodel. 

To generically define the notion of behavioral transformation, we introduced the notions of 
diagrammatic signature of a behavioral rule and of the diagrammatic signature of an action that 
specifies how to transform the graph elements at a generic level. Also, for the same purpose we 
introduced the notion of three-diagram which is a mechanism for associating formal graph 
components, represented by shape graphs, to actual components in the graph of the categorical sketch. 

We then assembled all these elements in the concept of a categorical behavioral sketch that defines the 
behavior of the models at the metamodel level. Based on the behavioral sketch we then defined the 
model concept of a behavioral sketch that we called a behavioral pattern (section 3.5.). 

Obviously, a model of a system involves combining the static model with the behavioral model in the 
same diagrammatic format in order to allow the modeler to test and analyze a real system. In this way, 
we have come to define a metamodel by coupling the static metamodel with the behavioral one. From 
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this it results that a model, in turn, is obtained by coupling the two dimensions specified by the 
metamodel, namely the static dimension and the behavioral dimension, the first dimension specifies 
the model states and the second one transitions from one state to another. 

In section 3.6. we introduced the notion of metamodel and the notion of multi-level modeling 
hierarchy. A multi-level modeling hierarchy can be represented by a tree, which has the root 
represented by the most abstract metamodel, the inner nodes are metamodels, and the leaves are 
models. Therefore, each model is directly or indirectly characterized by all the metamodels that are on 
a typing chain. A multi-level modeling hierarchy specifies a hierarchy that contains a family of models 
related to different levels of abstraction, which have a common root and two dimensions in which they 
can be located, a static dimension and a behavioral dimension. The static dimension is represented at 
each level i of a typing chain. Because typing is unique in each hierarchy, each graph, except the root, 
has exactly one parent graph in the hierarchy. For each element to have a type and the modeling 
process to be finite, the root graph has a self-defining collection of individual typing assignments. 

Also, in section 3.6. we introduced the notion of indirect three-diagram of a given three-diagram TD, 
which is a three-diagram obtained by composing a three-diagram TD with a matching p. Multi-level 
modeling thus creates the opportunity for the implementation of the behavior at a high level of 
abstraction, through generic behavioral transformations defined at the higher levels and their use at the 
level of the concrete models. 

We can see that, in our approach, behavioral signatures can be introduced at different levels of 
abstraction together with corresponding three-diagrams and are then mapped by indirect three-
diagrams to behavioral transformations that propagate to the least abstract level, i.e., to the level of the 
concrete model. Therefore, the behavioral transformations can be implemented generically, at a high 
level of abstraction and then applied to the concrete model. 

The behavioral transformations defined in this work are a solid basis for the implementation of a 
generic model execution engine that allows the simulation of models. In our approach the transition 
from one state to another is made through behavioral transformations. Of course, certain behavioral 
transformations can be carried out in parallel in the evolution process of the model. Starting from a 
theoretic result that says that any two behavioral transformations can be composed in one 
transformation, called E-concurrent transformation that cumulates the application of two sequential 
transformations in a single transformation [Ehrig2006] [Ehrig2015], we organized the execution 
process of a model into a category that we have called a category of instances and behavioral 
transformations that has as objects instances of the static model and as arrows behavioral 
transformations. The behavioral transformations between two instances of the model are thus 
represented by the macro-transitions triggered by the state represented by the initial instance. 

Because matching in a model is a complex problem involving NP algorithms, we propose to solve this 
problem by integrating behavioral transformations into some of the objects and arcs of the model. 
Specifically, we propose the integration of some calls to the procedures associated with generic 
behavioral transformations. Procedure calls will be made with appropriate parameters obtained by 
indirecting the three diagrams. These procedures can be implemented as reactive procedures, i.e., they 
will be activated every time the local state of the model undergoes a transformation. 
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Starting from the idea that the simulation starts from an initial state, we defined process simulation 
category (PSC) as a subcategory of the category of instances and behavioral rules (CIBR). 

The PSC category allows the study of the behavior of a system based on the traces of the model in the 
simulation process, which is identified with the paths in the PSC category that have as initial object the 
initial instance. 

Also, in this section a first evaluation is made of the concepts introduced by short relevant examples 
and a case study. 

Section 4 presents the use of categorical mechanisms to specify the concept of modeling method, 
presentation accompanied by the specification and implementation in ADOxx of an example of 
modeling method concept. The essential original contribution of section 4 is related to the categorical 
specification of the modeling method concept. 

The structure of a model and its behavior are essential dimensions of a model and each of them has its 
own syntax and semantics. Although there is a close connection between the structural semantics of a 
model and its behavioral semantics, they are still different. 

The essential condition for a language to allow the definition of a precise semantics is that it has a 
rigorous syntax, which clearly and unambiguously specifies the permitted syntactic constructions. The 
categorical sketch is an ideal concept for rigorously specifying the syntax of a language. The 
categorical sketch couples very well with the graph transformations and forms, in our opinion, a 
rigorous, expressive and efficient mechanism for specifying the behavior of a model. 

The semantics of a model structure involves mapping attributes to their set of values, interpreting the 
graph structure of the model, i.e., mapping syntactic constructions to well-defined structures such as 
sequential, repetitive, recursive, join, fork, meetings, etc. and defining operations on attributes in the 
context of these structures. 

Behavioral semantics of a model involves mapping the model to a set of predicates that check the state 
of the model and actions (functions) that give outputs from the modeled system, change the state of the 
model, and transform the graph structure of the model by repositioning components or adding or 
removing components. 

This approach provides an important resource of generic components such as: graphs, graph 
homomorphisms, categories, functors, diagrams, natural transformations, cones, cocones, limits, 
colimits, etc. which become fundamental concepts in diagrammatic modeling. All these constructions 
have a generic character and can be implemented as data types, mechanisms or apriori algorithms, 
independent of any diagrammatic model that uses them. 

The presentation is accompanied by the specification and implementation of an example of a modeling 
method concept. 

Section 5 presents the mechanisms for defining and implementing the MM-DSL language.  

Our essential contribution in section 5 is the partial implementation of the MM-DSL language. The 
MM-DSL language was designed and specified at the University of Vienna by Niksa in his PhD thesis 
[Visic2016] under the guidance of Professor Karagiannis. The language contains a subset of 
descriptive instructions that allow the definition of the components of a modeling method and a subset 
of calculation and flow control instructions that allow the specification of algorithms. The descriptive 
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part of the language was implemented in the work [Visic2016] and in this work we completed the 
implementation of the language with the calculation and control part, i.e., the language constructions 
that allow the specification of algorithms. 

The basic concepts of the MM-DSL language and the relations between them as well as the concepts 
specific to an application model are specified by the metamodel grammar. The graphic representation 
of these concepts is specified by graphical representation grammar. Mechanisms and algorithms 
specification is an essential feature provided by the algorithm grammar. 

To this essential contribution we can add the SMM specification in the MM-DSL language in order to 
demonstrate the essential facilities offered by the MM-DSL language for the implementation of 
modeling methods. 

In Section 4 we formalized the basic concepts of a modeling method in the language of category 
theory. We can see that the MM-DSL language offers us all the necessary facilities to be able to 
specify a categorical modeling method.  

The formalization based on the category theory introduced in sections 4 indicates that the MM-DSL 
language provides all facilities for the specification of the underlying concepts of a modeling method: 
representing formal objects that can be class extensions that contain attributes, instance of classes that 
contain attributes, individual elements or sets of elements, functions or sets of functions and events; 
representing formal functions that can be mathematical functions, relations and arrows in the sense of 
graph theory. 

Therefore, the MM-DSL language supports the complete implementation of a modeling method 
concept in a domain-specific modeling tool. This tool includes in addition to a modeling language also 
basic functionality, specific to a class of models, as well as guidelines and constraints for modeling 
scenarios according to different modeling purposes. In this way a model is not only a visual 
specification of a model, but also inherits a specific behavior from the metamodel and also allows 
structural and semantic processing, including reasoning on the structure or specific properties of the 
model elements. 

Section 6 presents the formalization and implementation of two relevant examples of modeling 
method, using the MM-DSL language.  

The essential contribution from section 6 is the specification and implementation of two relevant 
examples of modeling method, namely one referring to the construction of a modeling tool based on 
the Petri Nets language and the other based on a DSML for specifying a certain type of manufacturing 
process. Therefore, we exemplified the facilities offered by the category theory together with the MM-
DSL language for formalizing and implementing the concept of modeling method. This section has the 
role of evaluating and validating the theoretical and conceptual mechanisms introduced or identified in 
this thesis.  

Section 7 concludes the work by summarizing personal contributions and some conclusions.  
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2 Theoretical and conceptual foundations  

This section of the work presents the theoretical and conceptual foundations specific to the modeling 
domain and a brief analysis of the different existing metamodeling technologies. The content of this 
section is the result of the systematic study of the mechanisms and knowledge in the domain of 
research and aims to introduce a common understanding of the concepts of metamodeling, conceptual 
modeling and model-based development. The content of this section represents the theoretical and 
instrumental support for the identification and motivation of our research topic as well as for the 
integration of the research results in this research domain. 

3 Categorical multi-level modeling 

The diagrammatic specifications are widespread in modeling. At first, the diagrammatic notations 
were mainly used as communication specifications between modeling experts, software designers and 
programmers. This approach led to a diagrammatic modeling, in which the semantic meaning of a 
construction was approximately and confused. 

Nowadays diagrammatic modeling is an integral part of concepts such as Model-Driven Engineering 
(MDE), Model-Driven Development (MDD), or Model-Driven Architecture (MDA), which are 
different names of a common approach that aims to move the effort from writing code to creating 
models as primary artifacts in software development and then generating code directly from these 
models. 

In the context of MDE, modeling is based on the conceptual two-dimensionality of real-world systems 
and therefore a model is naturally represented by graphs. The current objectives of MDE impose a 
precise and concise formal syntax and semantics of the diagrammatic notations used to specify the 
models. The representation of the models through strings of symbols flattens their structure and hides 
the connections between them thus leading to voluminous, rigid and difficult to understand, validate 
and analyze specifications. 

The category theory offers a graph-based approach, which focuses in particular on the relationships 
between the components of a model. This approach has as its primary mechanism the categorical 
sketch that offers a universal formalism for defining the syntax and semantics of graphical languages 
equivalent to the EBNF formalism used for defining the syntax of programming languages. Our 
approach regarding the use of the categorical sketch as a mechanism for specifying the static 
dimension of the models is presented in section 3.2. 

In our approach a diagrammatic model is specified in the first phase, static, and then its evolution is 
specified by transformations of the model. Therefore, static models are images of functors defined on 
categorical sketches which are metamodels. The details of this approach are presented in section 3.3. 

Graphs are an intuitive way to represent the states of a system in visual languages. In this context, the 
behavior of the systems, thus represented, can be modeled by graph transformations that express local 
changes of the graphs and are therefore very suitable to describe the local transformations of the model 
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states. Section 3.4. approaches the problem of modeling the behavior of a model through graph 
transformations. 

Section 3.5. introduces the notions of model and metamodel by combining the concept of static model, 
which represents a state of the model with the notion of behavioral transformation and the concept of 
behavioral model. Obviously, a model of a system involves the combination of the two models in the 
same diagrammatic format in order to allow the modeler to test and analyze a real system. 

Section 3.6. presents our approach to multi-level modeling as a method of addressing the reduction of 
model complexity by abstracting and distributing this complexity on multiple levels. 

Section 3.7. treats behavioral transformations as a solid basis for the implementation of a generic 
model execution engine that allows model simulation. The main advantages of the behavioral 
transformations are given by their generic nature, a property that allows their implementation at a high 
level of abstraction, and their visual nature. 

4 Categorical Modeling Method 

Although there are many modeling tools, the diversity and heterogeneity of modeled systems today 
makes them too general in many cases and therefore does not provide mechanisms to efficiently 
specify models in certain specific areas. The solution to this problem is the development of new 
modeling tools that provide all the necessary mechanisms for the efficient specification of models in 
these domains. 

The concept of modeling method [Karagiannis2011] [Karagiannis2016] abstracts the notion of 
modeling tool, highlights the fundamental components of a modeling tool and concentrates the efforts 
of a large group of researchers to find the most appropriate methods for implementing such tools with 
minimal effort. In this section we focus on the use of categorical mechanisms in the process of 
formalizing and implementing the concept of modeling method in a modeling tool. 

The main components of the modeling method concept are the modeling language, algorithms and 
mechanisms and the modeling procedure. The purpose of these components is to allow the efficient 
specification and manipulation of concepts in the domain of modeling. We saw in section 3 that 
diagrammatic models are characterized by two dimensions, a static dimension and a behavioral 
dimension. Therefore, these components of a modeling method must allow the specification and 
manipulation of both dimensions of the models at the metamodel level. Category theory provides the 
appropriate mechanisms for the generic specification of these components. We specify the static 
dimension of a model, as we saw in section 3, through the categorical sketch and the behavioral 
dimension through behavioral rules, mathematical concepts that have a formal syntax and semantics. 

In the model based on category theory, mechanisms and algorithms are universal constructions. To 
specify the syntax of a graphical metamodel we used the categorical sketch, which in turn is 
represented in a graphical language. The sketch is based on a graph and constraints: commutative 
diagrams, limits and colimits in categories that are universal constructs and therefore are independent 
of the metamodel. The concept of natural transformation also has elements of universality, such as 
naturality property, which can be generically implemented. The arrows of the graph 𝓖𝓖 are sketch 
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operators that can be implemented at the meta-metamodel level, possibly with small adjustments at the 
metamodel level. Commutative diagrams, cones and cocoons, can be fully implemented at the meta-
metamodel level, thus ensuring the syntactic correctness of any metamodel specified by a sketch. 

Mechanisms contribute to increasing modeling efficiency by re-using and standardizing software. A 
mechanism is an independent, self-contained, reusable software entity that implements a variety of 
interfaces for the relation with the specified model. Thus, a mechanism is an executable code that can 
be coupled to the code of other components of a model. Algorithms that come with a modeling 
method, generally, interpret the model constructs based on universally valid principles for 
implementing their functionality. 

In many ways it is important to represent, for the most part, the semantics of the models in the 
metamodel. If we consider the model based on category theory then the constructions in the category 
theory can be implemented at the metamodel level as a package of mechanisms and algorithms that 
will work coherently in all the specified models. 

Part of the content of this section was included by the thesis author in [wp32020]. 

5 MM-DSL specification and implementation 

When the modeling process includes the implementation of a DSML, the first step is to choose an 
appropriate metamodeling tool and then to specify and implement the modeling method on the 
selected platform. The next step is to begin specifying the processes over this specific modeling tool. 
If we are in a deadlock, meaning that the chosen metamodeling platform does not give us enough 
support to be able to specify the specific real-world processes, we will have to take it from the 
beginning by creating a specific modeling tool over another metamodeling platform. If this specific 
modeling tool were independent of the platform, we could avoid this extra work. This is solved by the 
Modeling Method Domain-Specific Language (MM-DSL) that is thought of as an alternative to 
building a platform-independent Modeling Method. Platform independence is accomplished by 
translators specific to each metamodeling platform. 

The MM-DSL language was designed and specified at the University of Vienna and includes most 
relevant metamodeling concepts [Visic2015] [Visic2016]. The language contains a subset of 
descriptive instructions that allow the definition of the components of a modeling method and a subset 
of calculation and flow control instructions that allow the specification of algorithms. The descriptive 
part of the language was implemented in the paper [Visic2016] and in this work we completed the 
implementation of the language with the calculation and control part, i.e., the language constructions 
that allow the specification of algorithms. 

The conceptualization of a modeling method is largely dependent on the metamodeling platform on 
which it is to be implemented [Fill2013] [Visic2014]. The specification of metamodel-specific 
artifacts, such as abstract syntax, abstract semantics, specific generic algorithms, etc., is dependent on 
the platform selected for implementing the modeling method. This dependence is the main reason that 
determined the development of a DSL, which should standardize the process of conceptualization, 
implementation and evaluation of a modeling method. MM-DSL offers the facility to conceptualize 
and implement a modeling method concept independent of the platform on which it will operate. Of 
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course, this feature is conditioned by the implementation of a translator specific to this platform. In 
this way the MM-DSL code can be translated and then compiled and executed on different 
metamodeling platforms. In this section we present the first MM-DSL language translator that 
translates a modeling method specified in the MM-DSL language to the ADOxx metamodeling 
platform. 

There are many types of mechanisms used for modeling the syntax of a modeling language including: 
the mathematical theory of formal languages and algebraic mechanisms. The context free language 
syntax is often defined by the more widespread variants of generative grammars BNF and EBNF. In 
this section we will briefly present the EBNF specifications of the MM-DSL language, the tools and 
mechanisms we used in implementing this DSL.  

The syntax of a language is, in fact, a mechanism for the symbolic representation of semantics. 
Therefore, the implementation of DSML semantics can be done through operational mechanisms, i.e., 
by translating the syntax of the objects specified in DSML into the syntax of a language with a 
semantics already implemented on a machine [Voelter2010]. We will therefore translate the models 
specified in the MM-DSL language into objects specified in the ADOScript language. 

In this work we used the Xtext framework which contains all the necessary facilities to specify the 
syntax of MM-DSL language in EBNF language, for lexical analysis, parsing and construction of 
abstract syntax tree (AST) in Eclipse Modeling Framework (EMF) model format. To provide these 
features, Xtext includes the ANTLR (ANother Tool for Language Recognition) tool, which 
implements the LL(*) parsing algorithm. To specify the translator from the abstract syntax of the MM-
DSL language to the abstract syntax of the ADOScript language, we use the Xtend language that 
facilitates the DSL development process. The Eclipse Modeling Framework (EMF) [Dave2009] 
[Eric2009] is the host of all these tools and also provides the AST model representation format. 

Eclipse development is supervised by the Eclipse Foundation, an independent, nonprofit organization 
composed of more than 100 companies supporting Eclipse. The Eclipse Modeling Project is the basic 
element for Eclipse-based model development technologies. It is based on EMF, which provides the 
basic framework for modeling. Other modeling sub-projects are built over EMF, providing various 
capabilities. 

Eclipse Modeling Framework (EMF) is a modeling framework that exploits the features offered by 
Eclipse (see section 2.4.3) [Dave2009] [Bettini2016] [Eric2009]. EMF uses structured data to 
represent models, over which other tools can build specific models. The EMF meta-metamodel 
integrates very well into Eclipse, but can be used without Eclipse. EMF [OMG2011] [OMG2015A] 
[OMG2002] is based on the MOF metamodel [OMG_MOF] and has nowadays become a standard 
technology for building models and modeling languages.  

Part of the content of this section was published by the author of this thesis in [Craciunean2019A]. 

6 Two relevant examples 

Models, in general, are built in order to model different aspects of the behavior of a system and 
therefore the modeling tools must be appropriate to capture, efficiently, these aspects. In order for the 
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modeling process to be efficient, it is necessary that the same modeling language can be used, both in 
the informal and in the formal phase, i.e., executable. If the modeling tool is not suitable for the 
modeling domain, most of the times the informal model cannot be expressed for the understanding of 
the specialists in the modeling domain. Hence the need to build new modeling tools appropriate to the 
modeling domain in question. 

A common approach in modeling practice is to model certain aspects of a system's behavior through 
processes. A process contains the tasks to be performed and the order in which it is to be done. Thus, 
we can consider a process as a procedure specific to a particular type of cases. Essentially, a process is 
built of tasks, subprocesses, and conditions. Each subprocess is again composed of tasks, conditions, 
and possibly subprocesses. A task is a logical unit of indivisible work, and therefore it is always 
accomplished entirely or not at all. If an operation in the body of a task does not execute correctly 
during a task execution, then the state from the beginning of the task will be restored.  In this section 
we present a possible implementation of two modeling tools, both suitable for specifying processes, 
but with different degrees of specificity. 

We used the language provided by the category theory to formalize two examples of modeling method 
and then we will implement these examples using as support the MM-DSL language with translation 
on the ADOxx platform as we saw in section 5. We chose to implement a modeling method with a 
well-known language: Petri Nets, and a specific language for modeling manufacturing processes. The 
two examples of implemented modeling method are presented in subsection 6.2. and 6.3. 

A Petri Net model is characterized by a static dimension and a behavioral dimension. From a syntactic 
point of view, the static dimension is a graph with two types of nodes, some that represent places and 
others that represent transitions.  

Obviously, not every graph that has nodes of the two types, places and transitions is a Petri Net model. 
We will therefore have to add a number of constraints to this type of graph such as the fact that the 
graph is bipartite, connected and weighted. As we saw in section 5, the syntax of the static dimension 
of a model can be specified by a categorical sketch in which the constraints are imposed by categorical 
mechanisms. 

The semantics of the static dimension of a Petri Net model is given by the graph structure of the 
network, by the position of the tokens on places which in our implementation will be represented by 
values of attributes attached to this type of nodes and by the weights of the arcs. represented by the 
values of some attributes associated with the arcs. 

The dynamic dimension of a Petri Net model is given by the transitions that modify the local 
distribution of the tokens and by the necessary conditions for triggering the transitions. Triggering a 
transition is done if the preconditions and postconditions are met and affects only the places in the 
vicinity of the transition. In our approach, we modeled the behavioral dimension of a model, at the 
metamodel level, through behavioral rules composed of graph transformations and behavioral actions. 

Digitization of current manufacturing systems, which are among the most complex and heterogeneous 
systems, is a major challenge for MDD. Today's competitive conditions impose, imperatively, the 
increase of efficiency, which can be achieved only by reconfiguration and rapid adaptation to external 
requirements. Modeling is the main factor in achieving these goals and, therefore, modeling is the 
main engine for increasing efficiency. But in order for modeling to be truly a factor in increasing 
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efficiency, it is also necessary for the modeling process to be efficient. The efficiency of the modeling 
process is largely dependent on the facilities offered by the modeling tools used. Due to the fact that in 
the modeling activity of the manufacturing processes several specializations are involved, it is 
necessary that the used modeling language to provide support in all modeling phases, starting with the 
informal model specification phase and up to the executable model generation phase. 

Due to the great diversity of manufacturing processes, existing modeling languages are often too 
general and do not provide adequate support for specifying all concepts in the domain of modeling 
from the informal phase to the executable phase.  

In order to meet the modeling requirements from the formal phase to the execution phase, the 
modeling language must offer a readability accessible to all participants in the modeling process and at 
the same time mechanisms for precise specification of the models. To meet these two requirements, 
the modeling language must have a high degree of specificity. Petri Nets, for example, allow a precise 
specification of models because they are based on a strong mathematical formalism, but are too 
abstract and therefore have limited readability. Although Petri Nets provide mechanisms for the exact 
specification of concepts and their relationships, their applicability is limited to a class of models 
related to process dynamics [Karagiannis2016]. 

In the case of manufacturing processes, static semantics represented by the graph structure of the 
models and the values of the attributes is as important as the behavioral semantics represented by the 
behavioral rules. 

Under these conditions, the solution is to implement a new modeling tool, endowed with a modeling 
language specific to the domain, which would provide such facilities. 

The first phase of building a modeling language specific to a modeling domain is conceptual 
modeling. In this phase, the atomic concepts of the modeling domain are established and what are the 
characteristics involved in the models we want to specify. Also, in this phase it is established what the 
models we want to represent should look like and what are the operations to which these models are to 
be subjected. Therefore, this phase involves structuring all the information in the domain of modeling 
in terms of concept. 

In the next phase, it will have to be established, depending on the requirements of the end users, what 
the modeling instruments we want to build should look like. In this phase we have a benchmark 
concept, for specifying the components of the modeling tool, namely the concept of modeling method. 
We will therefore have to specify the components of the modeling method concept, i.e., the modeling 
language, the modeling procedure and the mechanisms and algorithms. Of course, the chosen 
metamodeling instrument also has an essential role in this phase. The MM-DSL metamodeling 
language has the role of offering flexibility in choosing the metamodeling tool. 

It is generally accepted that diagrammatic languages are best suited for specifying models in a 
particular domain because they are intuitive and expressive enough to provide support in all phases of 
modeling. The suggestive symbols attributed to atomic concepts provide an intuitive image of the 
models, and the multiple connection of these atomic components into the models provides a sufficient 
degree of expressiveness for the informal and formal representation of the models. 

In our approach, specifying a model involves specifying the two dimensions, namely the static 
dimension and the behavioral dimension. Both dimensions must be specified by a syntax, and this 
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syntax must receive the right meaning by mapping to a semantic domain. Obviously, it is preferable 
for the behavioral dimension to be specified and implemented, in full, if possible, at the metamodel 
level. Also, the semantics of the static dimension is preferable to be specified formally, at metamodel 
levels, and the language to be offered to end users only with the syntax necessary to specify the static 
dimension of the models and with a textually specified semantics in natural language. Our approach 
aims to achieve these goals. The algorithms implemented at the metamodel level will be integrated in 
the algorithms and mechanisms component of the modeling method concept. 

In this subsection we will briefly present the conceptualization process of a modeling method that we 
have called Modeling method for a digital manufacturing planner (MM-DiMaP), and which we will 
implement in a modeling tool that we named Digital manufacturing planning tool (DiMaP). The 
DiMaP modeling tool will be endowed with a diagrammatic modeling language that we have called 
DiMaP-DSML and which is a formal language. For the implementation of the DiMaP modeling tool, 
we used the MM-DSL language. The example in this subsection is inspired by the manufacturing 
processes of a company that produces Medical Lasers, for which I have developed software for over 
10 years. The content of this subsection was partially included by the author of this thesis in the papers 
[Craciunean2019C] [wp32020]. 

7 Conclusions and original contributions 

The essence of our approach in this thesis is related to the identification and definition of theoretical 
and practical mechanisms, appropriate to the process of abstraction of a specific domain and optimal 
specification of solutions in this domain. This approach is motivated by the imperative need to develop 
domain specific modeling tools in contrast to the timid concerns in this domain and aims to identify 
the mechanisms involved in the methodological development of these tools. 

The development of graphic languages adapted to specify models in a particular domain, called 
DSMLs, is an integral part of the software modeling process. Designing a new DSML often involves 
interpreting the nodes and edges of a graph as model-specific objects and then imposing domain-
specific constraints and assigning suggestive visual symbols to represent modeled concepts. Our 
approach is primarily to find the mechanisms that allow the generic implementation, at the metamodel 
level, of the syntactic constraints and dynamic behavior of the models. 

This paper highlights the compatibility between categorical mechanisms and software modeling 
mechanisms and contributes to reducing the gap between the abstract nature of category theory and 
modeling. The categorical sketch represents a diagrammatic metamodel of a class of graphical models 
and provides a powerful mathematical framework for formalizing the syntax of these models at the 
metamodel level. The constraints in defining the categorical sketch are imposed by the universal 
constructions from the category theory or by diagram predicate signature. The universal constructions 
from the category theory provide us with a package of universally valid results that can be 
implemented independently of any concrete model at the highest degree of abstraction. The diagram 
predicate signature can also be implemented to a high degree of abstraction.  

To define the behavior of a model (section 3.4.) we introduced the notion of behavioral transformation 
that transforms the structure of the model and the attributes within the limit allowed by the attached 
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constraints. These transformation rules act locally, meaning that they modify several local substates 
according to certain preconditions. A behavioral transformation is a general description of the local 
changes that can occur in a model and determines its behavior according to the evolution of the 
modeled system. In principle, a behavioral rule consists in replacing a part of the model with another 
part of the construction as well as calculating or recalculating the values of some attributes, in 
compliance with the constraints imposed by the metamodel. 

To generically define the notion of behavioral transformation, we introduced the notions of 
diagrammatic signature of a behavioral rule and of the diagrammatic signature of an action that 
specifies how to transform the graph elements at a generic level. Also, for the same purpose we 
introduced the notion of three-diagram which is a mechanism for associating formal graph 
components, represented by shape graphs, to actual components in the graph of the categorical sketch. 

We then assembled all these elements in the concept of a categorical behavioral sketch that defines the 
behavior of the models at the metamodel level. Based on the behavioral sketch we then defined the 
model concept of a behavioral sketch that we called a behavioral pattern (section 3.5.). 

Obviously, a model of a system involves combining the static model with the behavioral model in the 
same diagrammatic format in order to allow the modeler to test and analyze a real system. In this way, 
we have come to define a metamodel by coupling the static metamodel with the behavioral one. From 
this it results that a model, in turn, is obtained by coupling the two dimensions specified by the 
metamodel, namely the static dimension and the behavioral dimension, the first dimension specifies 
the model states and the second one transitions from one state to another. 

In section 3.6. we introduced the notion of metamodel and the notion of multi-level modeling 
hierarchy. A multi-level modeling hierarchy can be represented by a tree, which has the root 
represented by the most abstract metamodel, the inner nodes are metamodels, and the leaves are 
models. Therefore, each model is directly or indirectly characterized by all the metamodels that are on 
a typing chain. A multi-level modeling hierarchy specifies a hierarchy that contains a family of models 
related to different levels of abstraction, which have a common root and two dimensions in which they 
can be located, a static or syntactic dimension and a behavioral or semantic dimension. The static 
dimension is represented at each level i of a typing chain. Because typing is unique in each hierarchy, 
each graph, except the root, has exactly one parent graph in the hierarchy. For each element to have a 
type and the modeling process to be finite, the root graph has a self-defining collection of individual 
typing assignments. 

Also, in section 3.6. we introduced the notion of indirect three-diagram of a given three-diagram TD, 
which is a three-diagram obtained by composing a three-diagram TD with a matching p. Multi-level 
modeling thus creates the opportunity for the implementation of the behavior at a high level of 
abstraction, through generic behavioral transformations defined at the higher levels and their use at the 
level of the concrete models. 

We can see that, in our approach, behavioral signatures can be introduced at different levels of 
abstraction together with corresponding three-diagrams and are then mapped by indirect three-
diagrams to behavioral transformations that propagate to the least abstract level, i.e., to the level of the 
concrete model. Therefore, the behavioral transformations can be implemented generically, at a high 
level of abstraction and then applied to the concrete model. 
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The behavioral transformations defined in this work are a solid basis for the implementation of a 
generic model execution engine that allows the simulation of models. In our approach the transition 
from one state to another is made through behavioral transformations. Of course, certain behavioral 
transformations can be carried out in parallel in the evolution process of the model. Starting from a 
theoretic result that says that any two behavioral transformations can be composed in one 
transformation, called E-concurrent transformation that cumulates the application of two sequential 
transformations in a single transformation [Ehrig2006] [Ehrig2015], we organized the execution 
process of a model into a category that we have called a category of instances and behavioral rules that 
has as objects instances of the static model and as arrows behavioral rules. The behavioral rules 
between two instances of the model are thus represented by the transitions triggered by the state 
represented by the initial instance. 

The natural process of formalizing the models in section 3 demonstrates the adequacy of the 
categorical mechanisms to specify the concepts involved in the metamodeling process as well as the 
inter-structural relations between them. Also, the categorical language allows the faithful specification 
of the simulation and execution space of a model. The CIBR category has as objects the states of a 
model and as arrows the transitions of the model from one state to another and therefore represent the 
admissible paths of evolution of the model. The components of the CIBR category are objects that can 
be endowed with properties that can collect any information regarding the evolution of the system, 
such as the duration, frequency, cost and probability of execution of a transition. This information, if 
stored in a database, can be used to self-regulate or optimize the system with the help of intelligent 
analysis and learning tools. 

The essential original contribution of section 4 is related to the categorical specification of the 
modeling method concept. The structure of a model and its behavior are essential dimensions of a 
model and each of them has its own syntax and semantics. Although there is a close connection 
between the structural semantics of a model and its behavioral semantics, they are still different. 

The essential condition for a language to allow the definition of a precise semantics is that it has a 
rigorous syntax, which clearly and unambiguously specifies the permitted syntactic constructions. The 
categorical sketch is an ideal concept for rigorously specifying the syntax of a language. The 
categorical sketch couples very well with the graph transformations and forms, in our opinion, a 
rigorous, expressive and efficient mechanism for specifying the behavior of a model. 

The semantics of a model structure involves mapping attributes to their set of values, interpreting the 
graph structure of the model, i.e., mapping syntactic constructions to well-defined structures such as 
sequential, repetitive, recursive, join, fork, meetings, etc. and defining operations on attributes in the 
context of these structures. 

Behavioral semantics of a model involves mapping the model to a set of predicates that check the state 
of the model and actions (functions) that give outputs from the modeled system, change the state of the 
model, and transform the graph structure of the model by repositioning components or adding or 
removing components. 

This approach provides an important resource of generic components such as: graphs, graph 
homomorphisms, categories, functors, diagrams, natural transformations, cones, cocones, limits, 
colimits, etc. which become fundamental concepts in diagrammatic modeling. All these constructions 
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have a generic character and can be implemented as data types, mechanisms or apriori algorithms, 
independent of any diagrammatic model that uses them. 

The presentation is accompanied by the specification and implementation of an example of a modeling 
method concept. 

Our essential contribution in section 5 is the partial implementation of the MM-DSL language. The 
language contains a subset of descriptive instructions that allow the definition of the components of a 
modeling method and a subset of calculation and flow control instructions that allow the specification 
of algorithms. The descriptive part of the language was implemented in the work [Visic2016] and in 
this work we completed the implementation of the language with the calculation and control part, i.e., 
the language constructions that allow the specification of algorithms. 

To this essential contribution we can add the SMM specification in the MM-DSL language in order to 
demonstrate the essential facilities offered by the MM-DSL language for the implementation of 
modeling methods. The MM-DSL language allows the specification, independent of the metamodeling 
platform, of a modeling method. This implementation demonstrates a very good compatibility of the 
categorical mechanisms with the syntax and semantics of the MM-DSL language. 

The formalization based on the category theory introduced in sections 4 indicates that the MM-DSL 
language provides all facilities for the specification of the underlying concepts of a modeling method.  

The main contribution from section 6 is the specification and implementation of two relevant 
examples of modeling method, namely one referring to the construction of a modeling tool based on 
the Petri Nets language and the other based on a DSML for specifying a certain type of manufacturing 
process. Therefore, we exemplified the facilities offered by the category theory together with the MM-
DSL language for formalizing and implementing the concept of modeling method. 

The process of conceptualizing, formalizing, specifying and implementing the MM-DiMaP modeling 
method in the context of categorical mechanisms demonstrates the feasibility and efficiency of our 
methodological approach. At the end of this process, we obtained the DiMaP modeling tool, which 
was specified in the MM-DSL language and then translated and tested on the ADOxx metamodeling 
platform. Although this tool is a prototype endowed only with minimal functionalities, it still 
demonstrates the main advantages offered by the compatibility of a suitable modeling tool with a 
limited modeling domain. 

The DiMaP-DSML language, based on a small number of lexical atoms, offers sufficient facilities for 
the formal specification of manufacturing cells as well as facilities for analysis and optimization of 
manufacturing cells. The rich semantic load of language derives, on the one hand, from the unlimited 
complexity of the connections between lexical atoms, and on the other hand from the inclusion of 
behavioral semantics at the metamodel level. Therefore, although the DiMaP-DSML language is 
formal, it offers facilities for formally specifying a model in the modeling domain similar to the 
facilities offered by informal languages. 
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