

OIPOSDRU

"LUCIAN BLAGA" UNIVERSITY OF SIBIU **FACULTY OF ENGINEERING**

STUDY OF THE GRINDING PROCESS ON METAL CARBIDE **CUTTING TOOLS FOR THE MACHINING OF DEEP HOLES**

- THESIS SUMMARY -

Scientific coordinator: Prof. Eng. Paul-Dan BRÎNDAŞU PhD.

PhD: Eng. Silvia VULC

MINISTRY OF NATIONAL EDUCATION AND SCIENTIFIC RESEARCH "LUCIAN BLAGA" UNIVERSITY OF SIBIU UNIVERSITY RECTORSHIP B-DUL VICTORIEI, NO. 10, TEL. 0269217989, SIBIU, ROMANIA, 550024

DOCTORAL COMMITTEE MEMBERS

President	Prof. Eng. Liviu ROȘCA PhD. "Lucian Blaga" University of Sibiu
Scientific advisor	Prof. Eng. Paul-Dan BRÂNDAŞU PhD. "Lucian Blaga" University of Sibiu
	Prof. Eng. Petru BERCE PhD. Technical University of Cluj - Napoca
Scientific referents	Prof. Eng. Marian BORZAN PhD. Technical University of Cluj - Napoca
	Prof. Eng. Nicolae COFARU PhD. "Lucian Blaga" University of Sibiu

The public defense of the doctoral thesis will take place at "Lucian Blaga" University of Sibiu, Academic Reunion Center, str. Banatului, no. 6, room 11 (ground floor), on 29.04.2016, at 11:00 AM.

Preface

The industrial development, the constant updating of technological equipment, the automatization and computerization of manufacturing systems have led to increasingly intense research in mechanical processing.

As a professor involved in vocational and technical education, I was concerned with the vocational improvement of students in order to train competitive specialists for the labor market. In this respect, I kept in touch with the industrial field, with university professors to be up to date with novelty in this area of study and, at the same time, I noticed that producers in the mechanical domain want to optimize and improve manufacturing processes.

New materials that have not been explored to their full capacity, especially metal carbides used in manufacturing advanced cutting tools and their related technological manufacturing processes, require constant research.

Thus, grinding processing is no longer just a finishing operation but the means through which metal carbides are processed. The complexity of grinding processing gives way to a wide spectrum of research lines.

For this reason, I chose to study the grinding processing of metal carbides, with applications in the manufacturing of drills for deep holes of small diameters that require certain features, a high quality of active surfaces and resistance to different types of wear respectively.

Thanks to my scientific advisor, **Mr. Eng. Paul-Dan Brîndaşu PhD.**, I have succeeded to create this present PhD thesis that represents the result of a competent and highly professional guidance.

I would especially like to extend my deep consideration and respect for the way he has supported me all through my research period. Also, I would like to thank him for the understanding and elegance he has extended in order to help me overcome certain problems that have appeared during the scientific research program.

I hereby thank and would like to acknowledge the staff of professors from the Faculty of Engineering for their professional excellence and for their involvement in my training within the PhD program, for their suggestions and recommendations.

I would like to thank the following professors: **Eng. Petru BERCE PhD., Eng. Marian BORZAN PhD., Eng. Nicolae COFARU PhD.,** as scientific reviewers, who had the good will and patience to analyze and evaluate this paper.

I would like to thank **my family** for the support, understanding and patience they have demonstrated during the PhD program.

CONTENT

INTRODUCTION	
CHAPTER 1 SHORT HISTORY OF CUTTING. CURRENT TRENDS	
1.1. Overview	
1.2. Evolution of machine tools	
1.3. Evolution of cutting tools	
1.4. Evolution of cutting theory	
CHAPTER 2 THE CURRENT RESEARCH STATUS REGARDING THE GRINDING PROCES	
METAL CARBIDES	
2.1. Theoretical aspects of grinding process.	
2.1.1. The materials using to make grinding wheel	
2.1.2. Grinding wheels characteristics	
2.1.3. Choosing grinding wheels	
2.1.4. Kinematics of the grinding process	
2.1.5. Cutting forces	
2.1.6. Aspects of the grinding process.	
2.1.7. Cutting regime	
2.1.8. Cutting medium	
2.1.9. Vibrations	
2.1.10. Grinding wheel wear	
2.1.11. Quantity of heat in the grinding process	
2.1.11.1. Determining the quantity of heat in the contact area	
2.1.11.2. Methods for reducing temperature in the grinding process	
2.2. Research regarding the grinding process	
2.2.1. Research regarding the grinding processing of metallic materials	
2.2.2. Research regarding the grinding wheel	
2.2.3. Research regarding the phenomena of the grinding process	
2.3. Conclusions	74
CUADTED 2 THE SCODE AND OD LECTIVES OF THE THESIS	70
CHAPTER 3 THE SCOPE AND OBJECTIVES OF THE THESIS	
CAPITOLUL 4 MODELLING THE GRINDING PROCESS	
CAPITOLUL 4 MODELLING THE GRINDING PROCESS	
CAPITOLUL 4 MODELLING THE GRINDING PROCESS	
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS	
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 	
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 	
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 	80 80 83 84 84 84 84 84 86 83
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS	80 80 83 83 84 84 84 84 86 83 83 83
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 	80 80 83 84 84 84 84 84 85 83 85 90
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process	80 80 83 84 84 84 84 84 86 83 85 90 90 90 90
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 	
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 	
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process	
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process	80 80 83 84 84 84 84 84 85 90 90 90 90 90 90 90 90 90 90 90 90 90
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process	80 80 83 84 84 84 84 84 84 85 90 90 90 90 90 90 90 90 90 90 90 90 90
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process	80 80 83 84 84 84 84 84 86 83 85 90 90 90 90 90 90 90 90 90 100 105 106 111 115
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis). 4.4.8. Modelling using artificial networks (ANN). 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6. Modelling the grinding of the grinding process for DK460UF carbide 	80 80 83 84 84 84 84 84 85 90 90 90 90 90 90 90 90 90 90 100 105 106 111 115 117
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Models of the grinding process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis) 4.4.8. Modelling using artificial networks (ANN) 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6.1. Presentation of DK460UF 	80 80 83 84 84 84 84 84 85 90 90 90 90 90 90 90 90 100 105 106 111 115 117 117
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis). 4.4.8. Modelling using artificial networks (ANN). 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6. Modelling the grinding of the grinding process for DK460UF carbide 	80 80 83 84 84 84 84 84 85 90 90 90 90 90 90 90 90 100 105 106 111 115 117 117
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Models of the grinding process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis) 4.4.8. Modelling using artificial networks (ANN) 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6.1. Presentation of DK460UF 	80 80 83 84 85 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 910 910 910 92 93 </td
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis) 4.4.8. Modelling using artificial networks (ANN) 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6. Modelling the grinding process for DK460UF carbide 4.6.1. Presentation of DK460UF 4.6.2. The issue of grinding DK460UF 	80 80 83 84 84 84 84 84 86 83 85 90 90 90 90 90 90 90 90 90 90 90 90 90
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis) 4.4.8. Modelling using artificial networks (ANN) 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6.1. Presentation of DK460UF 4.6.2. Ranking the factors of the grinding process using "Triple Cross" Method 	80 80 83 84 84 84 84 84 84 85 90 90 90 90 90 90 91 90 91 90 91 92 93 100 105 106 111 115 117 117 117 119 120 130
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis) 4.4.8. Modelling using artificial networks (ANN) 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6.1. Presentation of DK460UF 4.6.2. Ranking the factors of the grinding process using "Triple Cross" Method 4.7. Finite Element Modelling of flow temperature in grinding DK460UF 	80 80 83 84 83 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 910 910 911 911 911
 CAPITOLUL 4 MODELLING THE GRINDING PROCESS 4.1. Overview - model and modelling 4.2. Modelling the processes and products. 4.3. Modelling and simulating the grinding process 4.3.1. Model of interdependence between the elements of the grinding process 4.4. Models of the grinding process 4.4.1. Modelling the machining process 4.4.2. Models of the grinding process 4.4.3. Empirical Models 4.4.3. Empirical Models 4.4.4. Analitical Models 4.4.5. Finite Element Modelling (FEA – Finite Element Analysis) 4.4.6. Applications of process simulation 4.4.7. Modelling using statistical methods (Regression Analysis) 4.4.8. Modelling using artificial networks (ANN) 4.4.6. Knowledge based and expert system models 4.5. Conclusions regarding the modelling of the grinding process. 4.6. Modelling the grinding process for DK460UF carbide 4.6.2. The issue of grinding DK460UF 4.6.2. Ranking the factors of the grinding process using "Triple Cross" Method 4.7. Calculating the maximum temperature and the flow temperature 	80 80 83 84 83 84 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

CHAPTER 5 MONOBLOC CUTTING TOOLS FOR PROCESSING DEEP HOLES OF A SMALL

DIAMETER	
5.1. Overview	143
5.2. Deep hole drills	144
5.2.1. Deep hole drills which cuts through in full	
5.3. Materials for manufacturing drills for processing deep holes	
5.4. Semi-products used in manufacturing small diameter deep hole drills	
5.4.1. Types of metal carbide semi-products	
5.5. Numerically controlled machine tools used to manufacture and sharpen deep hole drills	
5.5.1. ECOFLEX –Grinding center with 5 axes.	
5.5.2. Sharp Futura CNC5 – 5 axes.	
5.5.3. Designing the technology used to manufacture machine tools for hole processing	151
5.6. Grinding wheels	
5.0. Grinding wheels	
	100
5.7.1. Factors that determine the structure of the grinding process for carbides used in	160
manufacturing drills for deep holes with small diameters.	
5.7.2. Factors that influence the quality of gundrills' surfaces	161
	1.60
5.7.3. The technology of processing of gundrill with small diameters	
5.8. Conclusions	169
CHAPTER 6 EXPERIMENTAL RESEARCH ON THE GRINDING PROCESS OF DK460UF	
TUNGSTEN CARBIDE	
6.1. Overview	
6.2. Planning the experiment	
6.2.1. The steps of planning the experiment	. 171
6.2.2. Defining the variables of the experiment in the field of study	171
6.2.3. Choosing the variation levels for independent variables	172
6.2.4. Creating the plan for experiments	
6.2.5. Experiment classification	
6.2.5.1. Experimental plans	
6.2.5.2. Factorial experiments	
6.2.6. Statistical analysis of experimental data	
6.2.7. Determining the mathematical model of the experiment	
6.2.8. Decisions following modelling through factorial experiment	
6.2.9. Presentation of Design-Expert V7.0. software (Design of Experiment –trial version)	
6.3. Planning experimental research to monitor the grinding process of DK460UF tungsten carbides .	180
6.3.1. Establishing the factors to be monitored	. 180
6.3.2. The model of experimental research	
6.3.3. Establishing the experimental plan and the variation levels of factors	
6.4. The study of grinding forces in process grinding of DK460UF	
6.4.1. Choosing the typ of experiment	
6.4.2. Design of experiment and measuring	
6.4.3. Construction of schedule matrix	
6.4.4. Determination of the mathematical model of experiment and the analysis	
6.4.5. The variation of grinding forces in correspondence with grinding wheel wear	
6.4.5.1. Define the object of research	
6.4.5.2. Choosing the function - object	
6.4.5.3. Experiment planning	
6.4.6 Conclusions	
6.5. The study of temperature in process grinding of DK460UF	199
6.5.1. The study of temperature using INFRARED CAMERAS	. 199
6.5.2. Measuring temperature during the grinding of DK460UF carbide with thermocouple6.5.3. Conclusions	
6.6. The wear of the grinding wheel when processing DK460UF carbide	209
6.6.1. Design of experiment	
6.6.2. Conducting the experiment	
6.6.3. Experimental data	
6.6.4. Conclusions	
6.7. Measuring surface roughness	
6.7.1. Define the object of research	
6.7.2. Design of experiment	219

6.7.3. Conducting the experiment	221
6.7.4. Variation of roughness according to the wear of the grinding wheel	
6.7.5. Conclusions	233
CHAPTER 7 GENERAL CONCLUSIONS, PERSONAL CONTRIBUTIONS AND FUTURE LINES OF	
RESEARCH	235
7.1. General conclusions	235
7.2. Personal contributions	239
7.3. Future lines of research	241
BIBLIOGRAPHY 2	242
ANNEXES	255

1. INTRODUCTION

Among the cutting processing operations, grinding processing has become the most utilized finishing procedure, reprezenting almost 70% in the spectrum of finishing processing. Nowadays, following the development of technologica equipment and the emergence of new materials, grinding is no longer just a finishing operation.

Grinding, as the main processing operation of metal carbides, has become a field open to current research. The quality of the grinding machining process is reflected in the quality of obtained surfaces, in productivity and production time, but also in costs. The inclusion of grinding in the spectrum of basic processing has led to a need for field research. The grinding process in its entirety is still insufficiently explored.

There are many factors that influence the grinding process, that is why the optimization of the grinding process is an issue open to discussion.

The choice of subject of the present thesis was made after comprehensive bibliographic analysis of research in the field, finding works which have narrowly approached grinding processing of metal carbides with a high content of wolfram, as is the case of the material that is here subject of research, DK460UF, used in manufacturing drills for deep holes with small diameters. The figure below shows the SWOT analysis conducted in order to identify the research opportunities.

The present doctoral thesis approaches a small part of the issue of the grinding processing of metal carbides and the grinding of metal carbides for manufacturing drills for deep holes of small diameters respectively. During the present research process, the main issues tackled were identifying the optimal processing parameters for grinding the DK460UF metal carbide, in order to obtain a surface of high dimensional precision, with a low level of roughness and with an adequate appearance (no oxidation, burns).

The paper is structured on 7 chapters presented in the following paragraph:

Chapter I contains a short history of machine tools used in cutting processing, the timely evolution of cutting machines and tools, as well as the evolution of materials used in manufacturing cutting tools and current trends in the manufacturing of these tools.

Chapter II presents the theoretical aspects of the grinding process (the features of the grinding wheel, the kinematics of the grinding process, the cutting mode, the grinding forces, the wear of the grinding wheel) and the current state of studies performed by different researchers regarding the grinding processing of various materials, the properties of the grinding wheel and phenomena that accompany the grinding process.

Chapter III contains the objectives of the doctoral thesis and the research methods employed.

Chapter IV deals with the modelling of the grinding process. An overview of process modelling and models of the grinding process from the scientific literature are presented. Also in this chapter, the issues of the grinding process of metal carbides are approached, mentioning the main specific aspects. Taking into account the multitude of factors that influence the quality of the machining process, it is necessary to rank them. The studied models, as well as the main influencing factors that are identified, have created the basis for establishing a general model for grinding metal carbides with a high content of WC. A crucial factor in performing the grinding process is temperature. The flow of temperature affects the quality of the processed surface. That is why it was necessary to create a numeric model for the temperature flow to investigate the heat transfer in the contact area between the grinding wheel and the processed surface, required to create a comparative study with experimental research.

Chapter V includes the technological process of grinding using numerically controlled machine tools for metal carbides in order to obtain deep hole drills. In this chapter, the algorithm for planning the technological process for machining deep hole drills is presented, as well as the manner of selecting the cutting tool from the tool storehouse of the machine tool, using specialized software to design, visualize and simulate the processing technology, such as: TOOLdefine, SolidPRO, 3D-Collision.

Chapter VI is dedicated to experimental research. The methodology for experimental research and the Design Expert software used for determining the mathematical models of researched factors, as well as for graphically representing the variation of investigated parameters in relation to the independent variables considered. To obtain an overview on studies performed, a model for experimental research was elaborated. The cutting mode, the properties of the grinding wheel and the features of the processed materials are considered to be independent variables and the grinding force, temperature, wear of the grinding wheel and roughness of the processed surface are considered to be dependent variables. The level of variation for each parameter of the cutting mode was established and the grinding wheels for processing were selected. The experiment was planned for each output parameter under study and the data required for their mathematical modelling were acquired. The analysis of the obtained models was conducted using the ANOVA statistical analysis. The conclusions resulting from the study of the dependency of processed surface quality on the processing elements taken into account have led to the establishment of optimal parameters for processing DK460UF metal carbide, with a 91% WC content and 9% Co content.

Thus, for the study of grinding forces, processes on plane grinders with two grinding wheels of different diameters were performed using different cutting modes. To measure the components of the grinding force, the tangent and normal forces, the KIESTLER dynamometer was used. This dynamometer uses DynoWare software, which enables the recording of measured values and the export of data in Microsoft EXCEL, where these data can be processed. The values obtained were used in building the program matrix required to obtain the mathematical model.

In measuring temperature, a metal carbide - enamelled copper thermocouple was used, and a type K (Chromel - Alumel) thermocouple was used as calibrator. A stand for the calibration of the metal carbide - enamelled copper thermocouple was used. This thermocouple was then used in measuring the temperature in the processing of DK460UF metal carbide, on a plane grinder. The processing was performed at different cutting modes. To visualize the intensity of temperature flow in the contact area, INFRARED CAMERAS were used.

The wear of the grinding wheel was monitored in processing drills for deep holes with diameters between 2.025 and 2.5 mm. The wear of the profile was monitored on samples with 100 benchmarks, until catastrophic wear occured. The evaluation of the wear was performed using the Walter Helicheck Basic Optical CNC measuring machine. Comparative tests were performed regarding the variation of wear in wheels with different grits, in relation to the volume of removed material. These results were used in studying the G-ratio, parameter which defines the efficiency of the grinding process.

The roughness level was measured with MITUTOYO roughness tester. The processing of samples was performed on a numerically controlled CNC HAWEMAT 3000 machine, with different cutting modes, with grinding wheels of 46 μ m and 54 μ m grit, new and used. The quality of the processed surface was studied using the values of measured roughness and the appearance of the surfaces was examined using an electronic microscope at the French Institute of Advanced Mechanics of Clermont Ferrand, France. The defects determined by the degree of wear in the grinding wheels were emphasized.

The results of experimental research have led to the establishment of grinding parameters for an optimal machining process.

Chapter VII includes the general conclusions related to the entire research and the original contributions in approaching the subject of the doctoral thesis, as well as future research lines.

1. SHORT HISTORY OF CUTTING. CURRENT TRENDS

This chapter revisits certain important stages in the evolution of machine-tools, cutting tools and materials used in manufacturing them. With the evolution of machine tools and cutting tools, the theory of cutting was gradually developed.

1.1. Overview

The evolution of cutting is linked, during its whole evolutionary period, on the evolution of cutting tools and of machine tools, their interdependence leading to progress in each of these three fields, a development in one automatically leading to progress in the other fields.

1.2. The evolution of machine tools

Machine tools have a long period of evolution, from the lathe with wooden frame to the numerically controlled machines.

Lathe wood machine frame [72]

Lathe close to that of today [72]

Lathe function by pedals [72]

Lathe latest generation [72]

Fig. 1.1. The evolution of the lathe

1.3. The evolution of cutting tools

The cutting tool is part of the technological equipment that, according to the kinematics of the machine tool, divides the tooling allowance and it removes it as chips in order to obtain the shape, size and smoothness of the workpiece surfaces.

Primitive tools were created entirely out of carved stone, using different techniques, with different cutting angles.

Fig. 1.2. Primitive tools [228]

Figure 1.3. presents the evolution of the cutting tool with its most important developmental stages.

Fig. 1.3. The evolution of the cutting tool and its developmental stages. [138]

Performances in manufacturing cutting tools have influenced the evolution of technological processes and the construction of machine tools, in order to improve the process parameters.

A series of trends were observed in the development of cutting tools:

- The improvement of cutting power through new tool shapes with blades made of advanced materials
- Replacing monobloc tools with tools that use advanced materials only in the active part
- The gradual replacement of mono-blade tools with tools that have multiple blades
- Fast reconditioning using changeable plates
- Increasing the precision of manufacturing tools by using computer-aided design.

2. THE CURRENT RESEARCH STATUS REGARDING THE GRINDING PROCESSING OF METAL CARBIDES

In this chapter, the grinding process is described in its entirety in order to identify the factors that govern the process and their interdependence.

2.1. Theoretical aspects of grinding processing

The grinding process is analyzed according to:

- the grinding wheel (the nature of granules, grit, binder, hardness, factors that influence the choice of a grinding wheel);

- process kinematics (movements, forces, chip removal mechanism);
- the cutting regime (speed, feed, depth of cut);
- the cutting medium (properties, types of cooling liquids);
- the vibrations;
- the wear of the grinding wheel (the factors and the influence of wear on the process);

- the quantity of heat generated during the process (heat generated during the interaction between the grinding granule and the surface to be machined, the distribution of heat between the grinding wheel, the surface to be machined, the chip and the cooling medium, methods to reduce the temperature in the contact area, the variation of heat quantity in relation to the process parameters).

2.1.1. Materials used in building grinding bodies

Grinding bodies have three main components: abrasive granules, binder and pores, according to figure 2.1., each with its well-defined role [24].

The main grinding materials used in constructing grinding bodies are: the electrocorundum, silicon carbide, boron carbide, cubic boron nitride and diamond.

2.1.2. Features of grinding bodies

Grit characterizes the size of the abrasive granule and is measured in μ m.

Hardness of grinding bodies represents the resistance of the binder to the avulsion of the granule.

The structure of a grinding body represents the percentage ratio between the volumes of abrasive granules, of the binder and the pores.

The binder is made of a softer material than the granules and is mechanically and thermically manipulated. The most frequently used binder is the ceramic one, followed by synthetic resin mineral, organic and metal binders [180].

2.1.3. Selecting the grinding bodies

The selection is performed according to: the material of the abrasive granule, grit, hardness and the influence of the contact area between the workpiece and the grinding body.

2.1.4. The kinematics of the grinding process

The kinematics of the grinding process includes movements that generate the processed surface, the path described by the cutting tool, in order to remove the chip, the chip removal mechanism and the chip formation respectively.

Fig. 2.4. The chip formation in grinding[15]

According to the depth of the cut, the grain goes through three stages of chip formation: sliding, ploughing and cutting. The importance of the three stages is relative to the position of the granule on the surface of the wheel and on the kinematics of processing.

2.1.5. Cutting forces

The cutting forces may be estimated taking into account the interactions of granules that pass through the grinding area. (fig. 2.5.)

Fig. 2.5. Cutting force for an abrasive granule- $f_{f,i}$ - friction force; $f_{nf,i}$ - normal friction force; $f_{tf,i}$ - tangent friction force; b_c - the length of the contact strip; h - the width of the contact strip [36]

The cutting forces in the grinding process have two main components, the normal component and the tangent component, F_n and F_t . (fig. 2.7.)

Fig. 2.7. Components of the cutting force in the grinding process [187]

Fig. 2.8. Generating the surface through grinding [159]

In figure 2.8. (i - iii), the real contact length is the result of 3 components: the geometric contact area, the elastic distortion between the wheel and the surface to be processed and the contact between the abrasive granule and the surface.

To calculate the real contact length, the mutual elastic distortion between the grinding wheel and the workpiece to be processed and between the grains and the workpiece will first be considered and then the effect of the depth of cut. [159]

2.1.6. Aspects of the grinding process

Grinding involves a high number of variables that are inter-related. Before processing, it is necessary to decide which variables may be considered in the process of selecting the grinding conditions. The relationships and interactions between these variables are taken into account within the process control system. The dependency relationships between different process parameters is the subject of many papers.

2.1.7. The cutting regime

The speed is the peripheral speed of the grinding wheel in relation to the surface to be processed. It is regularly expressed in m/s.

The feed rate (feed) is defined as the longitudinal movement of the workpiece relative to the axis of the grinding wheel upon its rotation. The feed rate is used in calculating the total processing time. It is measured in mm/stroke or mm/rev.

The depth of cut represents the thickness of the layer of removed material upon one action of the cutting tool on the surface to be processed. It is measured in milimeters. Normally, the depth of cut remains between 0,005 and 0,04 mm. Lower values are assumed for high precision finishing and grinding.

An important parameter defining the accuracy of grinding processing is the rate of material removal, measured in mm^3/s .

2.1.8. The cutting medium

The cutting medium is highly influential in the grinding process, especially in terms of processing with high cutting speeds.

However, considering the undesirable effects it has, such as: environmental pollution, operator discomfort and the harmful effects on health, as well as the costs it involves, a lot of research focuses on lowering the quantity of cooling liquid or even eliminating it (dry grinding).

2.1.9. Vibrations

The vibrations in the grinding process may be external to the grinding process or they can be generated during grinding.

External vibrations are determined by the processing system (machine tool, devices, guides, connecting elements, etc.)

Internal vibrations (related to processing) are determined by the processability of the material, the irregularity of the surface, the modification of material properties during processing, a feed that is too high or too low.

2.1.10. The wear of the grinding wheel

In this paragraph, it is presented the main causes that determine the wear of the grinding wheel.

2.1.11. Quantity of heat in the grinding process

The formation of the chip during grinding processing may be divided into 3 phases:

- 1. The contact between the abrasive granule and the surface to be processed
- 2. Elastic distortion
- 3. Plastic distortion and chip detachment

A great part of the power consumed during grinding is converted into heat. This is due to the sliding and friction of abrasive granules on the processed surface. Friction is accompanied by a large quantity of heat. By decreasing the slide and friction, the temperature also decreases in the contact area. A solution in this case would be to increase the thickness of the chip.[107]

Fig. 2.13. Heat generate in the interaction between the abrasive granule and the workpiece [107]

2.1.11.1. Determining the quantity of heat in the contact area

This paragraph contains the calculation of the heat flow in tha contact area and the maximum temperature dependency of the grinding parameters, such as: speed, speed of piece, depth of cut and the grinding wheel diameter. (fig. 2.21.)

Fig. 2.21. Variation of maximum heat according to the process parameters [227]

2.1.11.2. Methods of decreasing temperature in the grinding process

This section contains a series of research done in order to reduce the temperature in the grinding process.

Decreasing the temperature and its effects require an analysis of thermal aspects, of the distribution of heat.

To decrease heat in the grinding process of metals, the total number of abrasive granules and the number of active granules may be reduced. This may be accomplished through the grinding wheels called T-Tool și T-Tool profile structured wheels. [42]

T-Tool is an innovative system for discontinuous or intermittent processing. This cutting tool is plane with superabrasive granules on a single layer.(fig. 2.22.)

Fig. 2.22. Structured grinding wheel T-Tool [42]

T-Tool can guarantee decreased temperature during processing, the high durability of the cutting tool, the adequate quality of the processed surface.

The first grinding experiments on fragile materials have shown that the T - Tool profile may sometimes reduce the grinding forces with up to 50%, compared to CBN type wheels. [42]

2.2. Research regarding the grinding process

The dense bibliographical research that has been carried out in this chapter is summarized in tables 2.2., 2.3., 2.4.

Materials	Authors	Conducted analyses	Conclusions
		The wear of a grinding wheel with	It was found that the wear
Titanium	Xipeng Xu,	Al ₂ O ₃ carbide granules was compared	phenomenon is slightly reduced in
Alloy	Yiqing Yu	to the wear of a grinding wheel with	the case of the cutting wheel with
(Ti6Al4V)	(2002)	CBN granules, produced due to	CBN granules due its the chemical
	[214]	chemical interactions at different	stability at high temperatures.
		temperatures.	Until the study was conducted, the causes were connected to the chemical composition of the
			material to be processed and of the
			grinding granules without taking
			into account the influence that
			temperature has on this type of
			wear.
Steel	Sorokin,G. M.,	The dependency relation between the	According to the mechanical
	Malyshev, V.	hardness of the material to be	features of steel, the friction
	N (2008)	processed and the hardness of the	coefficient between the considered
	[171]	grinding granules is analytically	grinding wheel and steel is
		determined.	determined, and based on it, the
			resistance to wear.
BOK60	Ljubodrag	Optimizing processing by	The critical penetration depth
Ceramic	Tanovic ş.a.	determining the critical depth of	ranges between $3 - 5 \mu m$, while the
carbide	(2011) [181]	penetration and the normal and	radial fissures on the surface of the

Table 2.2. Research regarding the grinding processing of different materials

		tangent components of the cutting according to their feed and depth	carbide are distributed at an angle between 35^{0} and 75^{0} in relation to the direction of movement of the grinding granule. If the speed is increased from 15m/s to 25 m/s, the radial propagation angle of the fissure is 10^{0} for the same penetration depth of the granule.
Ni based alloys	Qiang Liu, Xun Chen, Nabil Gindy (2007) [148]	The analysis is based on the Taguchi method by testing the Al ₂ O ₃ grinding wheels and the supergrinding wheels with diamond granules	The performance of the process is represented by the roughness of the processed surface, by the G ratio value, by the processing forces, power and temperature. The process is smoother using supergrinding wheels, the process is run with great cutting forces. In the processing using CBN cutting wheels, water should not be used as a cooling liquid.
	Stefan Olovsjö ş.a. (2010) [137]	Dependency between hardness and the size of cutting wheels employed has been established	The size of grinding granules and the thickness of undistorted chips influence the behavior of the material upon processing. The wear increases with the increase of hardness and the size of granules does not affect the wear of the flanks.
Brittle materials	Z. W. Zhong &V. C. Venkatesh (2009)	Two grinding modes were compared, parallel grinding and cross grinding.	The critical depth of cut of the brittle materials is determined according to the critical thickness of the chip for a given mode.
Steels and alloys with high plasticity	L. V. Khudobin and A. N. Unyanin (2008)	Reducing the wear of the grinding wheel due to the adherence of metals to its surface by determining the forces connecting the metal particles and the wheel's surface.	Methods have been found that can be used for cleaning the surface of the grinding wheel, using lubrification and cooling liquid under a pressure jet, cleaning hydraulically and mechanically using a grinding bar.

Table 2.3. Research on the properties of the grinding wheel

Analysis of the grinding wheel	Authors	Conducted analyses	Conclusions
Correlation of binder – grinding grains – grinding capacity	Hitoshi O., Masaki K., s.a. (2007) [71]	The experiments were conducted on 6 grinding wheels, using powders of iron (3,11% C), of steel with 0,02%C and with 0,01%C. In the binder matrix, the number of diamond grinding granules is between 325 and 1000. The ratios between the processing time and the volume of material removed were determined for the 6 grinding wheels with different structural features, as well as the ratio between the grinding pressure and the volume of material removed. The grinding capacity was evaluated using the method of processing a Al_2O_3 – TiC metal carbide with	material is essential in avoiding the plastic distortion of the grinding wheels. When using fine grinding granules, the binder hardness is important to ensure o greater

		constant pressure. The roughness of the binder, the connecting forces	same size. Porous wheels are easier to
		between the diamond grinding granules and the binder materials and the porosity of the wheel are relevant in determining the grinding capacity.	calibrate and repair.
The shape of the grinding wheel surface for processing involute cylindrical tools	Stephen P. Radzevich, Radoslav Krehel (2012)[150]	The profile of the grinding wheel is determined based on the differential geometry of surfaces and on the kinematics of movement for a solid in a Euclidian space. The SHAVER software is used to analytically determine the surface and then the theoretical surface is superimposed on the real surface, using CNC with 9 axes. The consecutive positions of the wheel in rotation are observed and the contact with the processing surface is made along a line.	The shape of the grinding wheel surface is determined using the method of discreetly processing the specified surfaces, method which allows the identification of the discreetly defined wheel's shape and features. The analytical method is embedded in SHAVER that can be used in profiling the wheels needed to shape the involute tools. Differential geometry for defining surfaces to be processed is employed as mathematical support.
Grinding grains of transition metal carbides	A.A. Adamovskii (2007) [1]	A classification of 3 groups has been created for each type of crystal granules according to the shape of the surface and the material. Gr. I – classic grinding granules with flat crystal surfaces, widely applied. Characterized by intra- and intercrystalline fissuring that determines the self-sharpening of grinding granules. Gr. II – lightweight granules, with low mechanical resistance. Used in finishing and trimming. They disintegrate intensely in the machining process. The surface is of low quality. Gr. III – granules with sintered structure used in the roughing process. The performance of the grinding wheel depends on the material and the structure of the granule.	Transition metal carbides have high processing properties upon grinding. The processing operation is efficient and the quality of the surface that is processed is high. The borides, carbides and nitrides of transition metals solve part of the inconveniences of other grinding materials (elasticity, thermic conductivity, chemical activity). Sintered grinding materials based on the carbides of transition metals were researched especially from the point of view of their behavior upon sharpening the grinding tools.
Topography of the grinding wheel	Fengwei HUO, Zhuji JIN, ş.a. (2008) [75]	To investigate the grinding process, it is necessary to accurately evaluate the topography of the grinding wheel. For this purpose, the distribution of diamond granules was analyzed, as well as their profile and the distance between the two adjacent granules. The interferometry of white light is employed on the surface of the wheel, measuring in 3D.	To recognize the diamond granules, it is necessary to sample a small space interval on a large reference surface with a strong resolution. The white light interferometry is efficiently used to measure the surfaces of grinding wheels with fine granules. The method based on the occurrence frequency of granule profile features and the distance between 2 adjacent diamond granules is used to identify the diamond granules.
Active grains	Safonova M.N., A.S. Syromyatnik ova, ş.a.	Research has been conducted to elaborate a methodology for determining the number of active grinding granules through methods of	The presented method may be applied in evaluating the granule concentration of random shapes and statistically homogenous

		1	
Distribution of grains on the work surface of a grinding wheel	(2007) [156] V.A. Nosenko, E.V. Fedotov, ş.a. (2007) [130]	experimental calculation. The algorithm of this method consists of choosing the geometric model of the active granule, the calculation of the number of active granules in the composite material and the verification of obtained results. To choose the geometric model, a parameter that characterizes the deviation of the real volume of grinding granules from the analogue model has been established for different geometrical shapes of the granules. To determine the quantity of active granules, the method of <i>quantitative metallography</i> was used. The number of particles was established using the probabilistic distribution for cubic particles. The verification of results was don through the so-called <i>CDS method</i> (Computer Diagnostic Sieve) Considering that not all granules take part in the machining process, a probabilistic model was created on the work surface of the grinding wheel, taking into account the probability of contact between the grinding granule and the processed surface and different types of wear that may occur. The wears that occur are: grinding wear, the avulsion of granules from	distribution in relation to the volume of composite material. The cutting process is intensified in relation to the increase of the granule size. This is due to the increase of stress on the granule that leads to the decrease in the binder's power to retain grinding particles. The work surface of the grinding wheel is seen as a probabilistic system that includes three subsystem: the contact probability of the granules with the processed surface, the probability of granule wear and the transition of probabilities according to the modifications of the granule state, as a result of the wear.
		the binder matrix and wear as a result of chemical reactions. To elaborate the probabilistic model, it is necessary to know the probability of occurrence for each type of wear of the grinding granule and its size. Three grinding wheels may be used if the three types of wear occur, or the work surface of a wheel is divided radially into three sections.	
Grinding grains of different sizes	G.A. Guseinov, S.A. Bagirov (2009) [63]	The subject of the research was to improve the grinding process by ensuring the uniform action of grinding granules on the surfaces to be processed. It is known that once the grinding granules decrease in size, their number increases and the processed surface roughness also decreases. A grinding wheel with strips that contain grinding granules of different sizes is analyzed, in order to ensure a uniform action. The size of the granules and the grit are determined.	Based on the employed method, granules of a large size are chosen for the front of the strip that decrease in size if the strips are consecutive (their number increases with their decrease in size). It has been demonstrated that if granules act in a uniform fashion in the grinding process, their number is reduced: external friction and temperature and the efficiency of the grinding process increases.
Comparisonbetweenthesurfacesofstandardgrinding	S.A. Bagirov (2012) [11]	It has been theoretically proven that the grinding granules from consecutive strips of grinding wheels act in a uniform fashion (G.A.	Two mathematical models are obtained, which are statistically and experimentally analyzed from the point of view of the

wheels and those with grinding grains of different sizes	Guseinov, S.A. Bagirov (2009)). In the present study, these suppositions are verified and the dependency of the processed surface roughness on the grinding conditions imposed by the two types of grinding wheels is determined.	parameters of the grinding wheel with different grinding granules. The analysis of results shows that the roughness of the processed surface is considerably lower in the case of processing using wheels with consecutive strips
		than in the case of standard wheels.

Tabelul 2.4. Research on the grinding process

Influence	Authors	Performed analyses	Conclusions
factors		TT1	
Cutting forces	Qiang Liu, ş.a. (2007)	The cutting forces were analyzed as important factors in the grinding performance. The cutting force results from the normal and tangent component. These components were studied in comparison on two Al ₂ O ₃ and CBN wheels.	The cutting forces are smaller on CBN wheels and greater on Al ₂ O ₃ wheels, but the roughness is greater because the friction wear and tear of the CBN grinding wheel is greater upon roughing, the temperature is higher and leads a the reaction between CBN and the water-based cooling liquid.
Friction	G. M. Sorokin and	The friction coefficient is	It has been observed that with the
forces (friction coefficient)	V. N. Malyshev (2008) [171]	calculated in the absence of the lubricant using a bar type wheel. The dependency between the friction coefficient and the features of the material (plasticity, yield strength, resistance to wear) is analyzed.	increase of the resistance and hardness of the material, the friction coefficient decreases. An increase in plasticity leads to an increase of the friction coefficient. In the grinding process without lubricant, the friction coefficient influences the wear rate of the wheel.
Generated heat	K. Salonitis, ş.a. (2008)	The generated heat is the result of the plastic distortion of the material to be processed, as well as of the friction between the processed surface and the surface of the grinding wheel. In the study conducted, the heat generated due to plastic distortion is neglected and the research focuses on the heat generated through friction.	The study focused on the evaluation of the influence that the grinding wheel features exert in the process of grinding hard materials. A model for estimating the quantity of generated heat in the grinding process was conceived, as a function of the process parameters and the features of the grinding wheel. The dependency of the Hardness Penetration Depth (HPD) on the process parameters was experimentally determined. HPD is the depth at which hardness is reduced with 80% in relation to the nominal value.
	Xipeng Xu, Yiqing Yu (2002) [214]	The processing temperature in the contact area creates structural modifications of the processing surface, as does the adherence of the	The study was conducted to determine the factors that increase the lifespan of a cutting wheel and to correlate the structure of the cutting wheel with the quantity of heat

	A.V. Repko, V.A. Smirnov (2008) [152]	material to the surface of the grinding wheel. The behavior of a grinding wheel with Al ₂ O ₃ granules and of a supergrinding CBN wheel were analyzed. Alloys of low thermal conductivity have processing defects because of the temperature in the contact area. The density of the flow of the heat absorbed by the material to be processed depends on the cutting speed, on the tangent component of the cutting force. At a constant processing speed, thermal defects occur due to the sudden increase of the cutting force. The decrease in thermal tensions may be accomplished by applying a grinding process with discontinuous grinding wheels with elastic elements.	gemerated in the grinding process. At different processing temperatures, 450°C, 800°C and 1000°C, it has been found that the supergrinding wheel has better chemical stability and greater resistance at higher temperatures. The analyzed discontinuous wheels have elastic elements fixed on their surface to decrease the contact area.
Cooling fluids	Mamun A. A., Dhar N. R. (2012) [118]	The decrease in the quantity of cooling liquid is aimed at and its influence on the way of shaping the chip is evaluated, as well as the roughness of the surface processed with Al ₂ O ₃ and CBN grinding wheels at different levels of the processing parameters in a dry medium, as well as in the case of a minimum quantity of liquid.	An analytical model of the processed surface is developed based on experimental investigations, which demonstrate that the roughness of the processed surface is significantly lower when a cooling liquid is used compared to a dry medium. The roughness is proportional to the rotation speed of the grinding wheel. The work speed significantly influences the value of the roughness. CBN wheels are more stable than the conventional ones. The model obtained may be used with a 96,46% accuracy to evaluate the roughness of the processed surface.
	Tawakoli T., Westkaemper E. (2007) [186]	Dry grinding (without cooling liquid) is an economic and ecological process, but it is hard to employ due to the nature of the grinding process. The cooling liquid is used to reduce and eliminate the heat generated during the process. The heat reduction may also be performed by modifying certain parameters connected to the cutting mode and the structure of the grinding wheel.	The study is based on identifying certain strategies to minimize the use of fluid. The strategies employed fall into 3 main groups: I. The transfer of heat between the surface to be processed and the grinding wheel is performed through another medium. II. The transfer of heat is oriented towards the grinding wheel or the formed chips, so that the processed surface is not affected. III. The transfer of heat is closely linked to the way in which the chip is shaped, which represents the subject of the study. The research is focused

Vibrations	Yao Yan, Jian Xu	Vibrations that accompany	on optimizing the shaping of the chip. Any modification in the parameters of the grinding process has an influence on the quantity of heat generated in the process. In this study, the efficiency of processing is determined by the increase of the execution time. The mechanism through which the
	(2012) [217]	the grinding process have an effect on the wear of the grinding wheel and the quality of the processed surface. The dynamic behavior of the grinding wheel system - workpiece in cylindrical grinding - is analyzed in this study. The relation between the contact force and the rotation speed of the piece and the grinding wheel is determined. Finally, the areas in which there are no vibrations or in which the values of vibrations are insignificant are identified.	contact force induces vibrations is clarified by combining the analysis of its own values with the alrgorithm for continuity. To avoid vibrations, the contact force can be decreased by using a soft grinding tool of a small width, or by reducing the feed speed. To design a grinding process, a linear and non-linear analysis of the phenomenon is necessary.
Efficiency of the grinding process	Wang S., C.H. Li (2012) [200]	The current state of research regarding the efficiency of the grinding process in relation to the process factors, high feed, great depth of cut, as well as the machine – piece – grinding wheel system are presented.	The issues that are physically and chemically specific to the grinding process are identified and the research lines are established for each identified issue regarding the increase of performance as well as the reduction of costs for advanced material processing.
The wear of the grinding wheel	Feng Z., Chen X. (2007) [53] Sumaiya Islam,	The study is based on the use of image processing tools in MATLAB to determine the degree of wear in the grinding granules. The cutting wear through	The uses of these image processing techniques are efficient in identifying the stress on the wheel and for monitoring the grinding wheel in real processing situations. The friction coefficient is determined
	Raafat N. Ibrahim (2011)	friction is studied in two parts, the attack on the processing surface and the cutting process itself.	for the processing with two types of grinding wheels according to the parameters of the cutting mode.
The rigidity of the processing system	V.I. Lavrinenko (2009)	The study takes into account the rigidity of the grinding wheel as an influencing factor on process performance. The rigidity of the machine – tool – piece system is determined by each component of the system. A comparison between the rigidity of the cutting wheel and that of the other components is performed. Research aimed at clarifying	It has been demonstrated that when the rigidity of the grinding wheel is much greater than that of the equipment, it does not affect the process performance. If the system of the machine has an inadequate rigidity, it can be compensated by reducing the forces in the cutting process. Standard profile grinding wheels are of great rigidity. Even if we were to reduce this feature threefolds it would not significantly affect the process performance. A value of 10 MN/m

			wear of the grinding wheel and the roughness of the surface in relation to the axial rigidity of the wheel. Tests have been performed on the processing of T15K6 carbide. The way in which the rigidity of the grinding wheel may be controlled was discussed. The factors that influence rigidity have been identified: the thickness of the wheel, the elasticity module and the diameter.	the grinding wheels, as well as for the grinding machine.
Designing the aminding	Koshin Chanlugin	A.A.,	The technological process	The process optimization is done by
the grinding process	Chaplygin (2011) [97]	B.A.	must satisfy the requests of the client regarding the	creating certain mathematical models that reflect the dependency between
Process	([) []		product delivery time and	the features of the process and those
			the minimal costs .	of the grinding wheel in processes
				with different wheels under different
				cutting conditions.

2.3. Conclusions

The documentation activity has led to the identification of these lines of research that do not present enough information, or that do not lead to the best theoretical and experimental results. The forementioned analysis has resulted in the following conclusions:

- > The grinding process is a complex process that depends on a multitude of variables;
- > The processing of hard materials is performed only by grinding;
- The factors that have the greatest influence on the quality of the processed surface by grinding are: the grinding wheel, through its shape, properties and degree of wear, the parameters of the cutting mode, the cutting speed, the feed speed, the depth of cutting.
- The grinding process has the following advantages: high precission, high quality of the surface, high productivity;
- In the presented experimental analyses of the grinding process, materials of titan alloy type, alloys based on nickel, brittle materials, steels and alloys of high plasticity were taken into consideration and metal carbides with a high content of wolfram carbide were less analyzed;
- ➢ No studies were conducted regarding the grinding of small surfaces, with edges and holes, such as the active surfaces of drills for deep holes of small diameters
- The modelling and simulation of the grinding process was elaborated in general, even less for the situation that was formerly presented.

3. THE SCOPE AND OBJECTIVES OF THE THESIS

Starting from the observations made during the documentation research, it was possible to define the objectives that are going to be reached during the research developed in the present thesis:

1. The systematic presentation of the current state of research regarding the grinding processing, in general, and metal carbides, in particular, following:

• the theoretical aspects of the grinding process with application in metal carbides

• the results of other analyses performed in relation to the grinding of different materials, especially those with high levels of hardness

• the features of grinding wheels required in different processing situations

• the interdependency between the factors involved in performing the process

2. The characterization of the grinding process for DK460UF metal carbides used in manufacturing cutting tools for processing deep holes.

3. Presenting the drills for deep holes and the requirements that are imposed for deep hole drill specific surfaces.

4. The study of the manufacturing technology for monobloc drills made of DK460UF carbide for processing deep holes with a small diameter and their resharpening.

5. The issues found in the grinding process and its shaping. The modelling of the temperature in grinding the DK460UF carbide.

6. The creation of a model for the grinding process of DK460UF metal carbides.

7. The planning and conducting of experimental research concerning the cutting forces, temperature, the wear of the grinding wheel and the roughness when processing DK460UF metal carbide and the identification of optimal processing parameters in manufacturing monobloc drills for deep holes with a small diameter.

8. The creation of models based on the data obtained in advance through experimenting and their validation, based on which the establishment of optimal processing parameters would be possible.

9. The establishment of the optimal grinding process for DK460UF metal carbide, used in manufacturing drills for deep holes with small diameters.

4. MODELLING THE GRINDING PROCESS

This chapter presents the models for the grinding process found in the scientific literature that represented a point of departure in shaping the grinding of DK460UF carbide.

4.1. Overview - model and modelling

In this paragraph, it defines "the model", the model attributes, the modelling process and the modelling stages and activities.

4.2. Modelling the processes and products

Efficient modelling requires an analysis of the interdependence between functional requirements and the modelling parameters. Also, it is necessary to rank the factors that significantly influence the analyzed process.

In the case of the grinding process, the ranking of factors was done using the "Triple cross" method (French version), presented in paragraph 4.6.1.

4.3. Modelling and simulating the grinding process

The model of the grinding process is a simplified representation of the real process, which allows a much more faster evaluation of modifications of the real system.

Experts in the field of simulations recommend the successive increase of the model's complexity. Validation of the grinding process implies its simulation under known conditions, followed by the comparison of results with those of the real process.

4.3.1. The model of interdependence between the elements of the grinding process

Fig. 4.5. The grinding process and the interdependency between the elements of the process [226]

As seen in figure 4.5., the grinding process is a function that depends on many variables, which determine the measurable output values, such as: the cutting force, the power consumption, the temperature in the contact area, the state of the processed surface, roughness, shape, size precision, the cost and productivity of the process. The variables that are part of the process are related to the cutting wheel, the machine tool, the cutting mode, etc.

4.4. Models of the grinding process

4.4.1. Modelling the machining process

After 1990, modelling and simulation witnessed an outstanding development, in line with the development of information systems and advanced technologies.

By running a comparative study between the research in the field of grinding to determine the interdependence of process parameters and the modelling and simulation of the grinding process, we can notice a significant increase of elaborate papers on the subject of modelling and simulation (fig. 4.6.).

Fig. 4.6. Research evolution in grinding modelling and smulation [21]

4.4.2. Grinding process models

The grinding process is the sum of interactions between the abrasive granule and the surface to be processed and the models must describe the complexity of relations between the topography of the grinding wheel, the process kinematics and the features of the workpiece to be processed.

4.4.3. Empirical models

This paragraph describes the features of empirical models. Empirical models are mainly based on values measured during processing. The most relevant models are those that integrate knowledge based expert systems.

4.4.4. Analytical models

Analytical models are used to avoid «the black box» of empirical models. Statistical methods take grinding into consideration as a cutting process in which all abrasive granules on the surface of the wheel that come in contact with the surface to be processed operate with the same depth of cut.

4.4.5. FEA – Finite Element Analysis

If kinematic modelling can be used as the basis for calculating the specific forces and energy, the modelling of physical elements of the process is a domain of finite element analysis –FEA.

To transfer the grinding process in a virtual medium, it is necessary to reduce the system variables. In this ideal model, all relevant parameters are integrated. The input parameters for a typical FEA simulation are: the geometry of the surface to be processed, the properties of the material to be processed, the cutting forces, the processing parameters, the coefficient of heat transfer between the cutting medium and the surface to be processed, etc.

4.4.6. Aplications of the process simulation

The FEA method allows a better understanding of the process and generates a complex analysis of experimental results.

For plane grinding, several models were created to simulate the distribution of heat during processing, under different conditions of applying the cooling liquid (fig. 4.15).

Fig. 4.15. Distribution of temperatures for different situations of applying the cooling liquid [70]

4.4.7. Modelling using statistical methods (Regression Analysis)

Regression analysis is the generic term of a statistical method that aims to find functional relations between dependent variables and one or two independent variables.

The models found in the scientific literature, independent of time, have targeted the modelling of the normal component of cutting forces. The coefficients and indexes are summarized in table 4.1. To apply these models it is necessary to examine closely the formulas of mathematical modelling.

	$\mathbf{F'}_{n} = \mathbf{c}_{wp} \cdot \mathbf{c}_{gw} \cdot \left(\frac{1}{q}\right)^{e_{1}} \cdot \mathbf{a}_{e}^{e_{2}} \cdot \mathbf{d}_{eq}^{e_{3}}$								
Grindin	g wheel	In	put paramet	ers	The	coefficient	s of the mo	del	
f_d	a _d	q	a _e	d _{eq}	$c_{wp} \cdot c_{gw}$	e1	e2	e3	
[mm]	[µm]	-	[µm]	[mm]	-	-	-	-	
EK80	L7VX								
СК	-	60	50 - 250	32,7	19,74	0,74	0,87	0,13	1
0,2	3*20								
EK60	L7VX								
100Cr6		60-220	15-105	10-100	10,34	0,56	0,78	0,22	2
0,2	3*50								
B126	V180								
100Cr6		20-90	6-100 8	82,3	9,53	0,56	0,56 0,78	0,22	3
-	-								
	1. Konig / Werner 2. Peters / Decneut 3. Salje / Bock								

Tabelul 4.1. Comparison between the coefficients of models created for
normal component of the cutting force [21]

4.4.8. Modelling using artificial networks (ANN)

These models have a series of distinguishable properties that recommend them for modelling complex, unstable processes that depend on several input variables.

4.4.9. Knowledge based and expert system models

Knowledge Based System (KBS) refers to a knowledge based system that may offer solutions for a function that can be normally soled by human intelligence. Expert System refers to a type of specialized system based on knowledge that offers consultancy and is used for purposes of high specialization. [21]

4.5. Conclusions regarding the modelling of the grinding process

- The models developed using different modelling techniques are limited to the field of the various parameters that define the grinding process.

- The kinematic models come relatively close to the real grinding process.

- The finite element analysis creates the physical simulation of the entire process. The experiments and the materials required to verify the simulations are limited by the current measuring techniques.

- Regression analysis is another modelling technique, with the purpose of establishing certain relationships between the input and output parameters. The experiments and calculation of regression coefficients remain the main factors in choosing such models.

4.6. Modelling the grinding process for DK460UF carbide 4.6.1. Presentation of the DK460UF carbide

The DK460UF carbide is a wolfram (WC) carbide, manufactured through a process called powder metallurgy. Wolfram carbide powder is found at a rate of 91%, the rest of 9% representing the metal binder, cobalt.

The DK460UF material has grains that are the size of 0.5 and 0.6 μ m.

4.6.2. Issues of grinding the DK 460 UF carbide

This metal carbide, with 91% WC and 9% Co, has specific properties, which influence the grinding processing. Thus, the small sizes of wolfram carbide grains cause good mechanical resistance, a high level of hardness, good thermal stability and great resistance to wear. These properties are perfect for the manufacturing of drills for deep holes of small diameters.

4.6.3. Ranking the issues of the grinding process using the "Triple Cross" method

The general model of grinding metal carbides, which was elaborated by researching models in the scientific literature, represented the starting point for determining the importance of the factors influencing the grinding process of the DK460UF metal carbide. (fig. 4.33)

THE MODEL OF GRINDING PROCESSING

Fig. 4.33. Model of grinding processing

To plan an optimal grinding process for the general processing of metal carbides and the particular processing of deep drills, I propose the evaluation criteria of the grinding process presented in figure 4.34.

Fig. 4.34. Synthesis of evaluation criteria for the grinding process

Following the evaluation criteria suggested in the figure above, I have identified the need for a correct grinding of the deep hole drilss made from metal carbide.

By identifying the input parameters that influence each output of the grinding process, I have ranked them using the "triple cross" method.

By analogy, the relative importance of each element that takes part in the process was determined for each output.

FP Number:	2						
FC Number:	3						
TOTAL	5						
			FP1	FP2	FC1	FC2	FC3
			FP1	FP2	FP1	FC2	FP1
/	: equal importa	ince		3	2	3	2
	:slightly						
1	superior			FP2	FC1	FP2	FP2
2	:superios on av	/erage			1	/	3
	: clearly						
3	superior				FC1	FC2	FC3
Functions	Points	%				3	2
FP1	4	19.0%				FC2	FC2
FP2	6	28.6%					2
FC1	1	4.8%					FC3
FC2	8	38.1%					
FC3	2	9.5%					
	TOTAL : 21	100 %					

For size accuracy, the important requirements are the initial state of the grinding wheel 38%, the accuracy of the machine tool 28%, the rigidity of the machine tool 19%. (figure 4.35)

Fig. 4.35. Ranking the input parameters that influence size accuracy

The important requirements of roughness are the properties of the grinding wheel 41,7%, the depth of cut 20,8%, the feed and the speed of grinding 16,7%.

Fig. 4.36 Ranking the input parameters that influence surface roughness

It may be observed that the chemical – physical state of the surface is influenced by the wear of the grinding wheel 29,1%, the depth of cut 21,8%, the cutting speed 21,2% and the size of the contact area between the grinding wheel and the processed surface 12,7%.

Fig. 4.37. Ranking the input parameters that influence the surface state

Starting from the general requirements of an efficient grinding process, but also from the specific conditions of grinding metal carbides and in particular from the processing of deep cutting drills of a small diameter, all the requirements will be stated, ranked and finally, the most significant for ensuring an optimal machining process will be selected, after which an optimal model for the grinding process of these tools will be created. (fig. 4.40)

Fig. 4.40. Synthesis of grinding conditions for metal carbide drills for processing deep holes with a small diameter

Observations:

- The grinding wheel must be made of diamond or cubic boron nitride grinding granules, distributed in a mineral binder (resin), the wheel being of high porosity;

- The roughness of grounded surfaces must be low, must have values between 0,225 μ m and 0,4 μ m. It depends on the grit of the grinding material, the structure of the wheel and the cutting mode.

- The cutting mode significantly influences the grinding process; processing must take place at a high cutting speed, 55 m/s, a low depth of cut, 0,015 mm and a small feed, 0,005 mm/rot.

- The normal and tangent components of the cutting force depend on the cutting speed and the depth of cut. They must have low values and represent an indicator of wear for the grinding wheel.

- The adequate use of the cooling liquid is important for reducing the generated heat and for avoiding thermal defects of the tip and blade of the drill; a water and oil emusion of 5% is used - PETROFERSUPERFIN, at a pressure of 1 MPa, recommended for the quality imposed for the surface of drills for deep holes of small diameters.

- To process small size surfaces, such as the surface of drills for deep holes of small diameters, the distribution of granules on the front surface of the grinding wheel is important

- The heat generated in the cutting process may lead to defects in the processed surface and the damaging of the components of the processing system.

4.7. Finite element modelling of the temperature flow

4.7.1. Calculating the temperature flow and the maximum temperature

Jaeger's model was used to calculate the temperature, in which the grinding wheel is represented as a heat source, evenly distributed on the length of the contact area between the piece and the wheel, moving along the piece at a speed equal to the speed of the piece.

Processed material:

DK460UF carbide: WC – 91% and Co - 9%

Maximum	Thermal	Specific heat	HV	Density	Young's	Poisson
temperature	conductivity		Hardness		Module	Coefficient
of use (⁰ C)		J/(K kg)				
	W /(m K)	_	Kg / mm ²	g / cm ³	GPa	
1000	73.0 - 100.0	200 - 480	1730 - 2400	12 - 15.8	600 - 715	0.24

Table 4.3. Properties of DK460UF metal carbide

1. Calculating the contact length

The following formula is used: $l_c = \sqrt{a_p \cdot d_s}$ (4.1.)

where a_p is the depth of cut, d_s is the diameter of the grinding wheel. Data used: $d_s = 300$ mm, 180 mm respectively, $a_p = 0,015$ mm, 0.025 mm respectively

Table 4.4. Contact length for different depths of cuts and different wheels

No.	Wheel diameter d _s [mm]	Depth of cut a _p [mm]	Contact length I _c [mm]
1	300	0,015	2,12
2	300	0,025	2,74
3	180	0,015	1,64
4.	180	0,025	2,12

2. Calculating the temperature flow

The temperature flow is calculated using the formula:

$$Q = \varepsilon \cdot \frac{F_t^I \cdot v_s}{l_c} \tag{4.6.}$$

where ε is the amount of heat in the piece, in percentages, F_t^I is the tangent force per piece width unit, v_s is the peripheral speed of the grinding wheel, l_c is the contact length.

$$\varepsilon = \frac{0.55 \cdot u_{ch} + u_{pl} + u_{sl}}{u} = \frac{u - 0.45 \cdot u_{ch}}{u} \Rightarrow \varepsilon = 1 - 0.45 \frac{u_{ch}}{u}$$
(4.8)

 u_{ch} is a constant equal to 26,7 J/mm³.

$$\mathbf{u} = \frac{\mathbf{F}_{\mathbf{t}} \cdot \mathbf{v}_{\mathbf{s}}}{\mathbf{a} \cdot \mathbf{v}_{\mathbf{w}}} \tag{4.9}$$

where v_w is the speed of the piece, $F_t^{'}$ - specific tangent force.

 Table 4.5. Specific tangent force for the two grinding wheels

No.	Wheel	Depth of cut,	Tangent force per piece width
	diameter,	a _p [mm]	unit
	d _s [mm]	*	F' _t [N/mm]
1	300	0,015	4,58
2	300	0,025	5,05
3.	180	0,015	2,75
4.	180	0,025	3,25

No.	Wheel	Depth of cut	Experimentally	Results from calculations				
	diameter	a _p [mm]	$F'_t[N/mm]$	u	ε	l _c	Q	
	d _s [mm]	-		[J/mm ³]	[%]	[mm]	$[W/mm^2]$	
1.	180	0,015	2,75	34,375	0,819	1,64	34,33	
2.	180	0,025	3,25	24,375	0,745	2,12	28,55	
3.	300	0,015	4,58	91,6	0,932	2,12	80,53	
4.	300	0,025	5,05	60,6	0,897	2,74	66,13	

Table 4.6. Temperature flow values according to the speed and depth of cutting

2. Calculating maximum temperature:

$$\theta_m = \frac{\beta \cdot \alpha_W^{-/2} \cdot \varepsilon \cdot p}{k_W \cdot b \cdot d_s^{-1/4} \cdot v_W^{-1/2} \cdot a^{1/4}}$$
(4.10)

where, θ_m is the maximum temperature, β is the constant depending on the shape of the heat source ($\beta = 1,13$ for rectangles, $\beta = 1,06$ for triangles), α_w is the thermal diffusion within the piece, ϵ is the percentage of heat in the piece, P is the grinding power, k_w is the thermal conductivity of the piece material, b is the contact width, d_s is the wheel diameter, v_w is the velocity of the piece, a_p is the depth of cut.

1. $a_p = 0,025 \text{ mm}, \Theta = 476^{\circ} \text{C}$

2. $a_p = 0.015 \text{ mm}, \Theta = 461.41^{\circ}\text{C}$

4.7.2. Finite element analysis of the temperature flow

1/

To create the model for temperature in the contact area the ABAQUS 6.13.4 software is employed.

The metal carbide under study is a parallelepiped of 110x20x10 size.

The model is analyzed, taking into account the heat transfer in thermal equilibrium (stationary). The interaction is a surface – medium one. Medium conductivity (air) = 20. It is the same for each step. It is considered that the medium temperature is evenly distributed and is 23^{0} C. The calculated thermal flow was applied, with variable values according to the values of the cutting mode.

Heat transfer models result according to the cutting speed and depth of cut.

Fig. 4.53. Variation of heat flow in the contact area *a*) v = 25 m/s, $a_p = 0.015 \text{ mm } b$) v = 25 m/s, $a_p = 0.025 \text{ mm } c$) v = 40 m/s, $a_p = 0.015 \text{ mm } d$) v = 40 m/s, $a_p = 0.025 \text{ mm}$

The heat flow depends on the cutting mode parameters. It may be observed that the temperature rises with the increase of the cutting speed, correlated with the increase of the depth of cut, result that was also obtained through experiments.

5. MONOBLOC CUTTING TOOLS FOR PROCESSING DEEP HOLES OF SMALL DIAMETER

In this chapter, the manufacturing technology for metal carbide drills for deep holes of small diameters is presented.

5.1. Overview

The quality of deep holes refers to size, circularity, roughness, rectilinearity, perpendicularity, hardness. Research performed in the field of deep holes has proven that this quality features may be simultaneously met in the case of processing with deep hole drills. This type of drill also ensures the finishing of the hole surface, besides the actual processing, not requiring further finishing, in general, for diameters smaller than 20 mm. [3]

5.2. Deep hole drills

5.2.1. Gundrills

5.3. Materials for manufacturing deep hole drills

DK460UF wolfram carbide, used in our research, contains 91% WC and 9% Co. It is used in the production of machine tools. Machine tools that operate under special conditions, related to the evacuation of chips, to the cooling of the active part, to the reduction of efforts, such as drills that have a large cutting length and a relatively low rigidity require strict specifications regarding processing, machine tools and related equipments. A large number of mentioned disadvantages may be removed by manufacturing these tools out of DK460UF carbide, which offers high resistance to wear, as well as thermal and mechanical resistance. The roughness of the active surfaces plays an important part in the durability of these tools. These carbides that are widely used in the production of cutting tools needed for processing materials that have a high level of hardness with the purpose of obtaining a high-quality surface increase productivity and reduce the processing time. The quality of the surface requires a low level of roughness and a strict form precision.

5.4. Semi-products used in manufacturing drills for deep holes of a small diameter

5.4.1. Types of semi-products from metal carbides

Fig. 5.4. Semi-products for drill heads for deep holes with straight openings and different shapes for the cooling - lubrication liquid

5.5. Numerically controlled machine tools for manufacturing and sharpening deep hole drills

5.5.3. Designing the manufacturing technology for cutting tools for processing holes

5.6. Grinding wheels

5.7. Grinding processing of carbides for manufacturing drills for deep holes of a small diameter

5.7.1. Factors that determine the structure of the grinding processing of carbides for manufacturing drills for deep holes of a small diameter

5.7.2. Factors that influence the surface quality for drills for deep holes of a small diameter

5.7.3. The processing technology of a drill for deep holes of small diameter "TOOLdefine" software module is especially created to build a cutting tool with a new geometry that does not exist in the database of the application.

Stages of constructing a cutting tool using the application:

1. Choosing the type of cutting tool and its basic geometry. It will be performed in a selection window in which we will choose:

2. Entering the data that defines the drill geometry

Fig. 5.21. Entering the data that defines the drill geometry
3. Choosing the grinding wheel

Fig. 5.22. Choosing the grinding wheel

Fig. 5.23. Production technology and initializing additional data

4. Production technology

Figure 5.23. represents the window that contains the entire production technology of the cutting tool.

Visualizing the machining process.

The "*SolidPRO*" software module offers the possibility to visualize the entire technological process, step by step.

Figure 5.24. represents the simulation of the machining process on a numerically controlled machine tool.

Fig. 5.24. Simulating the machining process on a NCMT

Simulation using the "3D – Collision" tridimensional simulator.

An important issue is the collision between the moving subassemblies of the machine tool, the occurrence of which would lead to significant damages and material losses.

In this way it is verified, step by step, if these trajectories intersect and the collision points, the exact moment of the collision and the duration of the collision are determined.

Fig. 5.25. Window for the calculation of operational collisions

By selecting that operation stage, the "collision film" can then be watched.

Fig. 5.26. Collision film in the technological machining process

Fig. 5.27. Windows for displaying the operation steps and for visualizing the collision step by step

5.8. Conclusions

1. The study of deep hole drills has emphasized the features required to ensure an accurate processing of holes and a long lifespan of the cutting tool.

2. To increase the productivity of deep hole drills, semi-products are used, which have holes for the cooling liquid, thus decreasing the number of processing operations. To obtain cutting tools of increased durability, metal carbides are employed.

3. The elaboration of the processing technology must take into account aspects related to material, the geometry of the drill and the technological equipment employed.

4. The development of software applications has reduced the planning duration of the processing technology.

5. Using "TOOLdefine", we have planned the execution technology for a deep hole drill and using "*SolidPRO*", we have visualized the entire technological process. Simulators help to visualize planning errors but also information regarding the existence of situations in which collisions between the components involved in the grinding process may occur.

6. EXPERIMENTAL RESEARCH ON THE GRINDING PROCESS OF DK460UF METAL CARBIDES

6.1. Overview

6.2. Planning the experiment

6.2.1. The stages of experiment design

6.2.2. Defining the variables of the experiment in the field of study [39]

6.2.3. Selecting the variation levels for independent variables

6.2.4. Executing the experiment plan

6.2.5. Classification of experiments

6.2.5.1. Experimental plans

6.2.5.2. Factorial experiments

6.2.6. The statistical analysis of experimental data

6.2.7. Determining the mathematical model for the experiment.

6.2.8. Decisions following the modelling through a factorial experiment

6.2.9. Presentation of Design-Expert V7.0 software.

6.3. Planning experimental research to monitor the grinding process of DK460UF metal carbides

To plan an optimal grinding process for processing metal carbides in general and deep hole drills in particular, the general model for the grinding process was the starting point, the main output parameters being the quality of the processed surface and the wear of the grinding wheel.

6.3.2. The model of conducted experimental research

Figure 6.5. presents the model of experimental research. Models for the cutting forces, temperature, wear and roughness of the processed surface will be created for different cutting modes, working with grinding wheels of different grits. The resulting models are used in determining the optimal parameters of the cutting mode when processing the active surfaces of drills for deep holes with a small diameter.

Fig. 6.5. Model of experimental research

6.3.3. Establishing the plan of experiments and the levels of variation of the factors

Within experimental research, several attempts were made in which the parameters of the cutting mode and the properties of the grinding wheel vary between the following limits:

- \blacktriangleright cutting speed, v = 40 ÷ 60 [m/s]
- ▶ feed, $f = 0,005 \div 0,008 \text{ [mm / rot]}$
- ▶ depth of cut, $a_p = 0.01 \div 0.03$ [mm]
- \blacktriangleright grit of the grinding wheel, 46 µm, 54 µm respectively

Also, within experimental research, the status of the grinding wheel was taken into account, as well as the degree of wear. Attempts were made using new wheels, as well as used wheels, so that the variation of monitored elements in the process is determined based on the main factors that influence the processing of surfaces.

6.4. The study of forces in the process of grinding DK460UF metal carbide 6.4.1. Selecting the type of experiment

The grinding force will be studied according to the two components, the tangent and normal forces, which have a significant influence in the grinding process.

Following the analysis performed on the process, modelling using a complete type 2^3 factorial experiment was chosen. The factorial experiment was used in modelling each component.

6.4.2. Planning the experiment and taking measurements

Experiments were conducted on a plane grinding machine. A prismatic DK460UF metal carbide piece, with the following measurements: 20x50x100 mm, hardness 1620 HV, granule size 0.5 μ m, was processed.

2 grinding wheels with diamond granules were used, having the following features: Wheel 1: D54 - 250 mm diameter, 10 mm width, 54 µm grit.

Wheel 2: D54 –180 mm diameter, 10 mm width, 54 µm grit.

The Kiestler dynamometer was used for measurement. (fig. 6.10.)

Fig. 6.10. Measurement forces with Kiestler 9255B dynamometer

Table 6.1. Variation levels of the influencing factors and the coordinates of the centralpoint of the experiment for the Ft, Fn component

			Physical value		
Parameter	Codified value	$\begin{array}{c} x_1 \Leftrightarrow v\\ [m/s] \end{array}$	$x_2 \Leftrightarrow f$ [mm/troke]	$x_3 \Leftrightarrow a_p$ [mm]	
Central point, x_{i0}	0	43	0.2	0.02	
Variation interval, D_i	Δ_i	7	0.05	0.01	
Superior level, x_{jsup}	+1	50	0.25	0.03	
Inferior level, x_{jinf}	-1	36	0.15	0.01	

Table 6.2. Measured values of the cutting forces when processing with new wheels

			Depth of		
	Speed	Feed	cut	Ft	F _n
		f			
No.	v [m/s]	[mm/troke]	a _p [mm]	[N]	[N]
1	50.000	0.250	0.01	45.860	98.480
2	36.000	0.150	0.01	29.260	76.860
3	36.000	0.250	0.03	50.530	107.410
4	36.000	0.150	0.03	48.070	95.230
5	50.000	0.150	0.01	19.210	65.050
6	50.000	0.250	0.03	37.670	77.540
7	36.000	0.250	0.01	41.420	91.480
8	50.000	0.150	0.03	27.350	79.670

Fig. 6.11. Values of cutting force components in relation to a_p, v=50 m/s

6.4.3. Construction of the program-matrix of the experiment

As stated, the variation of factors on two levels is enough, resulting in the maximum volume of the experiment, $N=2^{k}$.

6.4.4. Determining the mathematical model of the experiment and its analysis

$$\begin{split} F_t &= -250.36 + 14.68 \cdot v \ \text{-}732.80 \cdot f + 1720.55 \cdot a_p - 4.17 \cdot v \cdot f - 42.61 \cdot v \cdot a_p + 5472.40 \cdot f \cdot a_p \ \text{-}0.15 \cdot v^2 + \\ &+ 1902.84 \cdot f^2 \ \text{-}25253.38 \cdot a_p^2 \end{split} \tag{6.14}$$
 $F_{n} = -1011.32 + 59.92 \cdot v - 3229.46 \cdot f + 8192.85 \cdot a_{p} - 17.41 \cdot v \cdot f - 196.99 \cdot v \cdot a_{p} + 19706.19 \cdot f \cdot a_{p} - 0.60 \cdot v^{2} + 8470.21 \cdot f^{2} - 101153 \cdot a_{p}^{-2}$ (6.15)

The influence of each parameter and the adequacy of the model are determined by

performing the ANOVA analysis on the obtained models of force (fig. 6.16).

Fig. 6.16. Variation of F_t force in relation to the cutting mode parameters

The tangent component of the cutting force depends on the cutting mode parameters. It may be observed that it depends on the cutting speed, the depth of cut and the feed.

Fig. 6.19. Variation of F_n force in relation to the cutting mode parameters

The normal component of the grinding force is influenced by the cutting mode parameters and the variations are more significant than in the case of the tangent component.

6.4.5. Variation of forces in relation to the degree of wear of the grinding wheel 6.4.5.1. Defining the research objective

The experiment monitors the influence of the radial wear of the grinding wheel on the cutting force.

6.4.5.2. Selecting the objective function

The objective functions are the components of the grinding force, the tangent force and the normal force respectively.

6.4.5.3. Planning the experiments and acquiring data

The D54P150/A-C100 grinding wheel was used to process batches of 50 pieces made out of DK460UF metal carbide, until catastrophic wear set in. After each 50 piece batch, the radial wear of the wheel was measured and then the grinding force was measured. The cutting mode employed was: v = 55 m/s, f = 0.005 mm/rot, $a_p = 0.01$ mm.

The measurement of the radial wear was done using the Walter Helicheck Basic Optical CNC measuring machine (fig.6.32), and the forces were measured using the Kiestler dynamometer (fig. 6.10).

Tabel 6.4 includes the measured values of the cutting force components when processing using a grinding wheel at different stages of wear, according to the number of processed pieces. Table 6.4.

		-	
	Radius		
No.	variation	Ft disc uzat	Fndisc uzat
pieces	[µm]	[N]	[N]
50	4.25	50.35	100.50
100	7.75	56.26	110.42
150	9.45	62.34	127.54
200	11.50	65.67	144.52
250	15.70	72.25	173.65
300	18.75	80.25	185.80
350	22.30	88.30	197.65
400	27.20	94.55	235.43
450	34.75	101.44	286.88

500	41.80	109.15	328.95
550	56.40	116.35	355.67
600	64.20	150.45	412.75
650	78.60	227.35	532.42
700	90.30	291.05	600.45
750	100.42	347.35	755.20
800	108.30	502.65	900.45

Fig. 6.22. Measured values of cutting forces on processing using a worn grinding wheel.

Fig. 6.23. Variation of the cutting force components in relation to the radial wear of the grinding wheel

It can be observed that the tangent force, as well as the normal force, increase exponentially with the increase of wear in the grinding wheel. The tangent force increases more slowly compared to the normal force, whose increase is more significant.

Conclusions:

- 4 Independent parameters, depth of cut, degree of wear on the radius of the grinding wheel and the cutting speed influence F_t as well as F_n .
- ♣ For the constant speed of 36 m/s and an increase of feed from 0.15 mm/troke to 0.25 mm/troke, there is an increase in the normal and tangent components of the cutting force

- At the constant speed of 50 m/s and at the same variation of feed from low values to high values, an increase in the normal and tangent components is observed.
- When the depth of cut increases from 0.01 mm to 0.03 mm, the normal and tangent forces increase due to the thickness of the undistorted chip.
- Experiments have shown that if only the feed increases, the increase gradient of the forces is low.
- 4 At high speeds and small feeds, the force decreases.
- The wear of the grinding wheel significantly influences the values of the components of the grinding force.
- Knowing the way in which the parameters of the cutting mode influence the size of the forces, this process parameter can be controlled. Cutting modes with small feeds and high speeds are recommended.

6.5. The study of temperature in the grinding process of DK460UF carbide 6.5.1. The study of temperature using INFRARED CAMERAS

In figure 6.25., images show the increase of temperature in the contact area at the same time with the increase of cutting speed. Upon increasing the cutting speed, at a constant depth, the variation of temperature flow is significant.

6.5.2. The study of temperature when grinding DK460UF carbide using natural thermocouple Dreapta de etalonare 1

ig. 6.27. Stall for the calibration of t thermocouple

Fig. 6.30. Installation for measuring with a K type thermocouple

The results of the measurements are presented in the table below:

Table 6.6

No.	Speed v	Feed f [mm/rot]	Depth of cut a _p [mm]	Tension U [mV]	Temperature T
	[m/s]				[⁰ C]
1.	25	0.15	0.015	30.1	174
2.	25	0.15	0.025	52.6	310
3.	25	0.25	0.015	42.7	260
4.	25	0.25	0.025	53.5	325
5.	40	0.15	0.015	33.6	200
6.	40	0.15	0.025	57.8	350
7.	40	0.25	0.015	37.4	240
8.	40	0.25	0.025	67.8	480

Mathematical model

 $T = -114.62393 + 5.91106^* v + 390.67935^* f + 5841.43702^* a_p (6.18)$

Fig. 6.32. Variation of temperature in relation to v and f $a_p = 0.015 mm$

Fig. 6.33. Variation of temperature in relation to v and f $a_p = 0.025 mm$

6.5.3. Conclusions

- The independent parameters, depth of cut, feed and cutting speed influence the quantity of heat generated during processing.
- The influence of cutting speed on temperature is significant in relation to other parameters. Thus, the increase of temperature in relation to the increase of speed is greater at a higher feed and the increase is lower if the feed is lower.
- In the field of ordinary speeds, due to the increase of temperature in the plastic area, material adherences disappear or are diminished and the level of forces is reduced due to the reduction of distortions and frictions.
- ♣ The increase of temperature is also determined by the wear of the grinding wheel and can be considered an indirect indicator of wear.
- It is important to know the grinding temperature in evaluating the physical – chemical state of the processed surface, but also that of the subprocessed layer.
- On the other hand, by knowing the way in which the cutting mode parameters influence the quantity of heat, this process parameter can be controlled.

6.6. The wear of the grinding wheel when processing DK460UF carbide

The experiment aims to study the wear of the grinding wheel with different grits according to the number of processed marks and the volume of the removed material. Also, a study should be conducted regarding the wear of the grinding wheel in relation to the volume of the removed material.

Fig. 6.39. Estimated parameters of the wear of the grinding wheel

The main parameters that estimate the wear of the grinding wheel are presented in figure 6.39.:

- radial wear (Δr);
- corner wear.

6.6.1. Planning the experiment

The grinding wheel wear was monitored during the cutting process of drills for deep holes with small diameters (2.025 - 2.5 mm). The drills were sharpened on a Walter Helitronic Minipower machine tool. (fig. 6.31.)

Each drill was processed on 5 different surfaces, to obtain the active surface. Grinding wheels with 46 μ m and 54 μ m grit were used for processing.

Fig. 6.40. Walter Helitronic Minipower grinding machine (SC COMPA SA)

Fig. 6.41. Walter Helicheck Basic Optical CNC (SC COMPA SA)

Fig. 6.42. Surface and profile of the D54 grinding wheel after process a: *a) 100 drills b) 200 drills c) 300 drills d) 400 drills*

Fig. 6.43. Evolution of dislocation for the D54 grinding wheel after process a: *a) new wheel b) 200 drills c) 400 drills d) 600 drills*

Figure 6.43. shows that if the wear of the profile increases, the number of dislocations increases as well (grinding diamond granules leave the grinding wheel – light spots in the image).

Fig. 6.44. The wear of the grinding wheel with 54 \mum grit: *a***) – the profile of a new wheel;** *b***) – the profile of the wheel after it has sharpened 300 drills;** *c***) - the profile of the wheel after it has sharpened 600 drills;** *d***) - the profile of the wheel after it has sharpened 800 drills**

6.6.2. Conducting the experiment

To measure the wear of the profile of grinding wheels, these were monitored using samples of 100 benchmarks. The Walter Helicheck Basic Optical CNC measuring machine was used for measuring results (fig.6.32).

6.6.3. Processing the experimental data

The wear of the grinding wheel profile was measured after processing a batch of 100 drills. Catastrophic wear occurred when the radial wear was 0,1 mm.

|--|

			Radial wear	Profile wear	Profile wear
Number of	Volume of	Radial wear of	of the	of the	of the
sharpened drills for	removed	the cutting wheel	grinding	grinding	grinding
deep holes with a	material	with a 46 µm	wheel with a	wheel with a	wheel with a
small diameter	[mm ³]	grit (Δr) [μm]	54 µm grit	46 µm grit	54 µm grit
			$(\Delta r) [\mu m]$	[µm]	[µm]
0		0.00	0.00	0	0
100	102	5.24	7.75	27.04	32.56
200	204	8.30	11.50	43.16	43.52
300	306	16.34	21.75	115.23	92.53
400	408	28.56	32.20	167.81	138.56
500	510	43.12	48.80	224.57	227.82
600	612	54.76	64.20	281.32	337.86
700	714	68.05	90.30	351.71	469.63
800	816	79.37	115.00	408.73	587.79
900	918	93.17		482.52	
1100	1122	112.4		568.34	

Fig. 6.45. Variation of radial and profile wear for grinding wheels with different grits

Figure 6.46. represents the "G-ratio" variation in relation to the volume of removed material during the grinding process using wheels of different grits. "G-ratio" values are generally very low, which demonstrates that the processing of these wolfram carbide tools is more difficult than grinding extended areas.

Fig. 6.46. "G-ratio" variation in relation to the volume of material removed when processing with grinding wheels of different grits

Figure 6.47. a) presents the structure of a new D 46 grinding wheel, b) is the structure of the same wheel with a radial wear of $43.12 \,\mu\text{m}$.

Fig. 6.47. – **Structure of the grinding wheel:** *a) the grinding wheel before use b) the grinding wheel with a radial wear of 43.12µm (SEM image 1500 x zoom)*

6.6.4. Conclusions

The study conducted on the wear of the grinding wheel has the following conclusions:

- By analyzing the wear curves, we can observe that grinding wheels with a greater grit wear off faster.
- The performance of the grinding wheel features a greater value of the "G-ratio". Due to the small surfaces of drills for deep holes with a small diameter, with lots of edges and gaps, a hypothesis for the study can be drawn: "G-ratio" is low.
- The study shows that "G-ratio" decreases relative to the wear of the grinding wheel.
- Processing small surfaces with cutting edges and gaps is difficult compared to larger surfaces. The grinding wheels sustain shocks which lead increase their wear.
- From the point of view of grit, "G-ratio" is greater when using low grit wheels, which implies a more efficient process. Low grit wheels are preffered when processing drills for deep holes with small diameter.

6.7. Measuring surface roughness

6.7.1. Defining the object of research

To determine the roughness of the surface processed by grinding DK460UF carbide used in manufacturing drills for deep holes of a small diameters, we seek to obtain an experimental model. Following the preliminary analysis, modelling by complete factorial experiment, type tipul 2⁴, was chosen.

The objective functions are R_z, R_a.

6.7.2. Planning the experiment

Processing the rectangular samples of DK460UF metal carbide, of 20 x 50 x 100 mm sizes was performed on a numerical on a CNC HAWEMAT 3000 machine (fig.6.48.), with grinding wheels of different grits, 46 μ m, 56 μ m respectively, of 150 mm and 180 mm diameters, of 10 mm width. A water and oil emulsion of 5%, PETROFERSUPERFIN, was used as a cooling medium at a 1 MPa pressure, suited for the superior quality of the surfaces processed with diamond grinding wheels.

Fig. 6.48. CNC HAWEMAT 3000 (GUHRING SRL)

Fig. 6.49. MITUTOYO roughness tester

Parameter		Values	
Real Codified		Levels	
		- 1	+ 1
Cutting speed, v [m/s]	X1	40	55
feed, f [mm/rot]	X ₂	0,005	0,008
Depth of cut, a _p [mm]	X ₃	0,01	0,03
grit [µm]	X_4	46	54

Table 6.9. Levels of variation of the factors

The program-matrix of 2^4 factorial experiment is created using the Design Expert software.

Roughness R_a Depth of cut Roughness R_z Nr. Grinding Speed Feed wheel grit f a_p [mm] [µm] [µm] v [µm] [m/s][mm/rot] 0.126 0.504 40 0.005 0.03 1 46 2 46 55 0.005 0.03 0.113 0.452 0.008 3. 46 40 0.03 0.142 0.5684. 46 55 0.03 0.132 0.008 0.532 5. 46 40 0.005 0.01 0.063 0.290 6. 46 55 0.005 0.01 0.057 0.228 0.084 7. 46 40 0.008 0.01 0.328 55 0.077 0.316 8. 46 0.01 0.008 9. 54 40 0.005 0.03 0.139 0.572 10 54 55 0.005 0.03 0.128 0.512 0.645 54 11 40 0.008 0.03 0.156 54 0.008 0.03 0.150 0.597 12 55 13 54 40 0.005 0.01 0.072 0.342 0.065 14 54 55 0.005 0.01 0.276 54 40 0.095 15 0.008 0.01 0.381 54 0.008 0.087 16 55 0.01 0.362

Tabelul 6.10. The program-matrix of 2⁴ factorial experiment

By applying the multiple polynomial regression, the expression for evaluating roughness was obtained, with

$$R_a = -0.0484 + 3.0375 \cdot a_p + 6.6667 \cdot f + 1.5313 \cdot 10^{-3} \, grit - 5.6667 \cdot 10^{-4} \cdot v \quad (6.21)$$

Fig. 6.57. Variation of roughness in relation to f, $a_p = 55 \text{ m/s} (D46 \text{VB4P/A})$

(6.22)

From the point of view of the appearance of the processed surface, it was visualized using an electronic microscope. The images captured with the electronic microscope complement the results obtained by performing measurements.

Fig. 6.64. Electronic microscope (Institut Français de Mécanique Avancée-Laboratoire Casimir)

Fig. 6.67. Image capturing

a) Surface before processing

b) Processed surface v=55m/s, $f=0.005 \text{ mm/rot. } a_n = 0.01 \text{ mm}$

a) Surface before processing

b) Processed surface v=55m/s, f=0.005 mm/rot, a_p=0.01mm

Fig. 6.69. SEM images of surfaces processed with D54P150/A-C100 grinding wheel

6.7.3. Conducting the experiment

During the experimental research, attempts were made in which the parameters of the cutting mode and the grits had as variation fields:

- \blacktriangleright cutting speed, v = 40 ÷ 60 [m/s]
- > feed, $f = 0,005 \div 0,008 \text{ [mm / rot]}$
- ▶ depth of cut, $a_p = 0.01 \div 0.03$ [mm]
- \blacktriangleright grit from 46 µm to 54 µm

6.7.4. Variation of roughness in relation to the wear of the grinding wheel

Roughness is influenced by the wear of the grinding wheel. For this study, the optimal cutting mode is considered in the case of processing using new grinding wheels, thus: cutting speed v = 55 m/s, feed f = 0.005 mm/rot and a depth of cut $a_p = 0.01$ mm.

Number of	Grinding wheel with 46µm grit		Grinding wheel with 54µm gr	
sharpened	Radial wear	Roughness R _z	Radial wear	Roughness R _z
gundrills	[µm]	[µm]	[µm]	[µm]
0	0.00	0.228	0.00	0.423
100	5.24	0.236	7.75	0.435
200	8.30	0.248	11.50	0.468
300	16.34	0.321	21.75	0.520
400	28.56	0.393	32.20	0.668
500	43.12	0.471	48.80	0.814
600	54.76	0.625	64.20	1.054
700	68.05	0.768	90.30	1.192
800	79.37	0.873	115.00	1.370
900	93.17	0.987		
1100	112.4	1.068		

Tabelul 6.11. Grinding wheel radial wear (cutting regime: depth of cut = 0.015 mm, feed = 0.005 mm/rev, speed = 55 m/s)

Fig. 6.70. Variation of roughness in relation to the radial wear of the grinding wheel

Surfaces processed with worn grinding wheels were also examined under the electronic microscope. Images captured using SEM are presented in figure 6.62. It can be observed that each type of wear of the wheel creates major defects of the processed surfaces.

b)

a) Grinding with D46VB4P/A grinding wheel with 46 μ m grit, with a radial wear of $\Delta r = 34.75 \,\mu$ m, $a_p=0.03 \,\text{mm}, f=0.008 \,\text{mm/rev}, v=55 \,\text{m/s}, roughness R_z = 1.192 \,\mu$ m. Radial wear caused greater roughness.

b) Grinding with D46VB4P/A grinding wheel with 46 μ m grit, clogged, a_p =0.01mm,f=0.005 mm/rev,v=40m/s, roughness $R_z = 0.972 \mu$ m. The clogging of the grinding wheel determines the adherence of the material particles to the processed surface.

c) Grinding with D54VB4P/A grinding wheel with 54 μ m grit, worn granules, a_p =0.03mm, f=0.008 mm/rev, v=55m/s, roughness R_z = 0.768 μ m. Due to the wear of the grinding wheel, there is intense friction between the surface and the wheel, which causes an increase in temperature in the contact area. The layer under the processed surface shows burns and oxidations.

d) Grinding with D54VB4P/A grinding wheel of 54 μ m grit, clogged, a_p =0.03mm, f=0.008 mm/rev, v=40m/s, roughness $R_z = 0.766 \mu$ m. The material particles adhere to the processed surface.

Conclusions:

Independent parameters, depth of cut, feed, grit and cutting speed influence R_z and R_a .

Roughness increases in relation to the increase of the depth of cut. Roughness may be decreased if the depth of cut is reduced when grinding wheels with low grits are used.

↓ The feed is very important in influencing the surface roughness when grinding wheels with high grits are used. Using low grit grinding wheels decreases the significance of this parameter.

Grit significantly influences the roughness of a surface. High grits of grinding wheels determine high values of surface roughness. Since the granules are large and the distance between them is greater, this causes an increase of the cross-sectional area of the removed chip.

The cutting speed has a relatively small effect on the values of roughness. The increase in speed causes a slight decrease of the values of roughness.

It is important to optimize the grinding process of the wolfram carbide used for cutting tools, because their active surfaces require certain qualitative features. Moreover, the quality of the active surface of the cutting tool leads to an easier removal of the chips and thus durability is improved. The maximum roughness permitted for the active surface is $Rz = 0.3 \mu m$.

The experimental results facilitate the achievement of optimum parameters for the grinding process from the point of view of surface quality. The optimum parameters resulting from the experimental research of the grinding process were: depth of cut ap = 0,01 mm, feed f = 0,005 mm / rot, cutting speed v = 55 m/s, grit of grinding wheel 46 μ m. In these conditions, the value of surface roughness is Rz = 0.228 μ m.

The study of roughness variation in relation to the radial wear of the grinding wheel, with the imposed roughness $Rz = 0.3 \mu m$, concluded that it can only be achieved by processing using grinding wheels of grits lower than 46 μm. In this case, for D46, a maximum radial wear of $\Delta r = 30 \mu m$ is allowed.

7. GENERAL CONCLUSIONS, PERSONAL CONTRIBUTIONS AND FUTURE LINES OF RESEARCH

In this doctoral thesis, the study of the grinding process for DK460UF metal carbide was conducted, used in manufacturing tools for machining holes, in order to determine the optimal processing parameters.

7.1. General conclusions

The grinding process is a process of machining that includes several factors that more or less have an influence on its proper execution. The optimization of the machining grinding process may be achieved by partially optimizing its components.

➢ Grinding wheels with diamond granules and resin-based binder are recommended for processing metal carbides. It has been demonstrated that grinding wheels with gross grit lead to an increase of specific energy and of the quantity of removed material, to the expense of the quality of the processed surface.

> The factors that have an impact on the quality of the surface processed by grinding are: the grinding wheel, the parameters of the cutting mode, the cutting medium, the cutting forces, the temperature flow.

> The analysis of factors that influence the quality of the surface processed by grinding show the fact that the parameters of the cutting regime have a great impact on its improvement, alongside the features of the grinding wheel.

> The active surfaces of drills for deep holes with a small diameter, with cutting edges and holes for the cooling liquid require a superior quality. The parameters of the cutting regime, the properties of the grinding wheel and the degree of wear are subjects of the present study. The creation of models for forces, temperatures, wear of the grinding wheel and roughness are useful results in the field of processing metal carbides.

The grinding force depends on the feed, speed, the depth of cut and the velocity. Also, the degree of wear of the grinding wheel has an influence on the sizes of forces.

The cutting speed influences the components of the cutting forces, but the degree of influence of the main speed also depends on the values that other parameters of the cutting process acquire. Thus, for a constant speed of 36 m/s, and an increase of the feed from 0.15 mm/stroke to 0.25 mm/stroke, an increase in the normal and tangent components of the cutting force is detected, due to the greater thickness of the undistorted chip. Also, at a higher, constant cutting speed, the grinding force increases as the feed between the same limits increases, the cutting process is intensified, but due to the high cutting speed, friction also increases.

> When the depth of cut is increased from 0.01 mm to 0.03 mm, the normal and tangent forces increase due to an increase in the thickness of the undistorted chip.

 \blacktriangleright By knowing the influence that the cutting mode parameters have on the grinding force, this factor can be controlled.

> It has been observed that when the feed is low and the cutting speed is high, the forces decrease.

> The wear of the grinding wheel determines an increase of the grinding force.

Higher grit grinding wheels wear off faster.

The "G-ratio" parameter, indicator of volumetric wear of the cutting wheel, in materials that are hard to process when working under difficult conditions, may decrease.

 \succ Processing of small surfaces with cutting edges and gaps is difficult compared to larger surfaces. The grinding wheels are subjected to shocks, which leads to significant wear.

 \succ The "G-ratio" is greater when using wheels of lower grit, which implies a more efficient process. Low grit wheels are preferred when processing the surface of drills for deep holes with a small diameter.

> The wear of the grinding wheel is also influenced by the parameters of the cutting regime and by the cutting medium At a greater depth of cut, the cutting force on the grinding grain is higher, which results in an increase of wear. At high cutting speeds, the friction between the grinding wheel and the surface to be processed is greater, leading to the wear of the grains. The temperature in the grinding process determines the wear of the grinding wheel. The rate of wear of the grinding wheel is decreased by using a cooling medium.

 \succ The maximum temperature in the contact area increases with the increase of the depth of cut, with the speed of the wheel, with the wheel diameter, but it decreases with the speed of the piece.

> The quantity of heat in the piece depends on the cutting regime parameters.

 \succ The overall temperature is harmful to the processed layer, while the local temperature and the heat generated in the contact area between the grain and the processed surface determine an increase in the degree of wear of grinding grain.

 \succ The average temperature decreases as the speed of the piece increases because heat is always retrieved by new areas of the piece.

> The wear of the grinding wheel determines an increase of temperature.

The depth of cut parameter has the greatest influence on the roughness of DK460UF processed surfaces by grinding. If it decreases from 0,03 to 0,01 mm, the roughness of the surface is approximately 50% improved (R_a decreases from 0,113 µm to 0,057 µm and R_z decreases from 0,452 µm to 0,228 µm).

Feed is the second most important factor in influencing roughness. The decrease in feed leads to a decrease in roughness.

➢ Grit of the grinding wheel influences the quality of the surface. A wheel with fine grit will lead to a smaller value of roughness.

 \succ The cutting speed has a relatively small influence. The increase in speed slightly decreases roughness.

The mathematical models obtained for roughness are robust and important. The complex statistical analysis conducted using Design Expert software has proven the adequacy of the model and the chance that the roughness value would change in the case of random noise is 0,01%.

7.2. Personal contributions

Personal contributions are reflected in:

1. Elaboration of the SWOT analysis to determine the opportunities of the subject presented in the doctoral thesis.

2. An extensive bibliographical research that has included a large number of papers that have approached the issue of grinding processing (over 500 papers, out of which 30% were published in the past 5 years. I have summarized the information from these papers in

table form - tables 2.2., 2.3 and 2.4., in which the analyses conducted by researchers and their results were presented. The fields of research are: materials processed through grinding, the structure and topography of the grinding wheel and the influence of these aspects on the process, as well as phenomena accompanying the grinding process).

3. The structured presentation of all aspects related to the grinding process: the grinding wheel, grinding kinematics (chip formation, grinding forces, necessary movements), the cutting mode, the cutting medium.

4. A summarized presentation of modelling techniques and of models for important aspects of the grinding process.

5. Elaboration of the general analysis model for the grinding processing of DK460UF metal carbide.

6. Establishing the influence of different process factors and ranking them using the "Triple cross" technique.

7. Elaboration of a numerical model of the heat flow when processing DK460UF metal carbide.

8. Presentation of drills for deep holes of small diameters, of their geometric features, of the problems that appear in the exploitation process (deep drilling).

9. Designing the manufacturing technology of drills for deep holes with small diameters, with emphasis on the grinding operation.

10. Establishing experimental research to identify and define the work parameters for grinding DK460UF carbide used in manufacturing cutting tools for processing holes.

11. Planning the experiments to determine the influence of grinding processing parameters in the grinding force, conducting the experiments, analysis and interpretation of results. To determine the mathematical models and the graphical representation of its dependency on independent variables the Design Expert software was used. The adequacy of the model and determining the impact of influencing factors on the grinding force were performed using the ANOVA statistical analysis method.

12. Planning the experiments to determine the influence of grinding process parameters on temperature, conducting the experiments, analysis and interpretation of results. For measuring, a carbide-copper thermocouple was used, and as a calibrator, a type-K thermocouple. A calibration stand was used to calibrate the thermocouple. To determine the mathematical models and the graphical representation of its dependency on independent variables, the Design Expert software was used. The adequacy of the model and determining the impact of influencing factors on temperature were performed using the ANOVA statistical analysis method. To visualize the intensity of temperature flow in the contact area between the grinding wheel and the carbide surface, INFRARED CAMERAS were used.

13. Planning the experiments to determine the wear of the grinding wheel in relation to the number of processed benchmarks (drills for deep holes with small diameters). The evolution in the wear of the grinding wheel was monitored, measuring the radial wear at each 100 processed benchmarks, determining the number of benchmarks at which catastrophic wear occurs. It was processed 1900 gundrills for two grinding wheels (for grinding wheel with 46 μ m, the catastrophic wear occurs after 1100 machined gundrill and for grinding wheel with 54 μ m, the catastrophic wear occurs after 800 machined gundrill).

14. Planning the experiments for determining the influence of grinding process parameters on the roughness of the processed surface, conducting the experiments, analyzing and interpreting the results. To determine the mathematical models and the graphic representation of its dependency on independent variables, the Design Expert software was used. The adequacy of the model and determining the impact of influencing factors on roughness were performed using the ANOVA statistical analysis method. 15. Using SEM to visualize the impact of cutting mode parameters and the properties of the grinding wheel on the quality of the processed surface. The study was conducted at the French Institute of Advanced Mechanics in Clermont Ferrand, Franța.

16. Conclusions regarding the optimal processing parameters for DK460UF metal carbide, with a 91% WC and 9 % Co content, processed using two different types of grinding wheels, with different grits, 46 μ m and 54 μ m. The processing conditions for reaching the 0,228 μ m roughness threshold imposed by the surface quality were determined:

Using low grit wheels (46 μm) in the following cutting mode: cutting speed 55 m/s, feed 0,005 mm/rev, and 0,01 mm depth of cut.

For the obtained values of the cutting mode, the other factors involved in the grinding process also fall within the influence limits that do not significantly alter the quality of the active surfaces of deep hole drills, which is extremely important for conducting an advanced process of deep drilling.

7.3. Future lines of research

Subsequent to the research conducted within the present doctoral thesis, it is useful to develop studies on the following subjects:

1. Determining the dependency of the quality of active surfaces of drills for deep holes with a small diameter made of DK460UF metal carbide, processed through grinding, on other factors, such as: the contact duration between the grinding wheel and the surface to be processed, the geometry of the chip, the topography of the grinding wheel, etc.

2. Determining the influence of processing parameters on the quality of processed surfaces for other types of drill.

3. Using other methods to determine the optimal parameters for the grinding processing of DK460UF carbide, such as: the Taguchi method, etc.

4. Creating a database containing all the optimal parameters for processing wolfram carbide destined for the manufacturing of cutting tools to process deep holes of small diameters, as well as the optimal combination of these parameters.

5. Creating an advanced system for measuring temperature in the contact area

6. Creating an overall monitoring system for the process of grinding metal carbides. Currently, certain parameters are optimized and according to them, other parameters will be improved.

BIBLIOGRAPHY

1	Adamovskii, A.A.	<i>Precision dressing of diamond tools,</i> Journal of Superhard Materials, October 2007, Volume 29, Issue 5, pp 316-318
2	Alagumurthi, N., Palaniradja, K.	<i>Optimization of grinding process through design of experiment</i> – A comparative study, 2006
3	Anderson D., Warkentin, A., Bauer,	Comparison of numerically and analytically predicted contact
U	R.	temperatures in shallow and deep dry grinding with infrared
		measurements, International Journal of Machine Tools & Manufacture,
		2008, Vol. 48, pp. 320–328
4	Armarego, E.I.A. Brown, R.H.	<i>The Machining of Metals</i> , Prentice Hall Englewood Cliffs, New Jersey, 1969.
5	Arunachalam N, Ramamoorthy B	<i>Texture Analysis for Grinding Wheel Wear Assessment Using Machine Vision. Proceedings of the IMechE Part B, 2007, 221:419–430.</i>
6	Aurich S. C., Braun O., Warnecke	Development of a Superabrasive Grinding Wheel with Defined Grain
	G.,	Structure Using Kinematic Simulation, Annals of the CIRP, vol. 52, no. 1, 2003, pp. 275 – 280
7	Azizi A., Rahimi A., Rezaei S.	Study on Rotary Cup Dressing of CBN Grinding Wheel and the Grinding Performance, International Journal of Advanced Manufacturing, 2010,
		47:1053–1063
8	Azizi A., Rahimi A., Rezaei S.M.,	Modeling of Dressing Forces of Vitrified CBN Grinding Wheels with
0	Baseri H.	Rotary Diamond Cup Dresser, Proceedings of the Institution of
		Mechanical Engineers Journal of Machining Science and Technology, (2009), 13(3):407–426
9	J. Badger	Factors affecting wheel collapse in grinding, CIRP Annals -
		Manufacturing Technology 58, 2009, pp. 307-310
10	Badger J., Torrance A.	A Comparison of Two Models to Predict Grinding Forces from Wheel
		Surface Topography, International Journal of Machine Tools &
		Manufacture, 2000, 40:1099–1120
11	Bagirov, S.A.	Surfaces ground by standard wheels and wheels with graduated grain
		sizes, Russian Engineering Research
10		January 2012, Volume 32, Issue 1, pp 50-54
12	Baroiu N., Berbinschi S., Teodor V.,	Comparative Study Of Drill's Flank Geometry Developed With The Catia
	Oancea N.	Software, The Annals Of "Dunărea De Jos" University Of Galați, Fascicle
13	Baseri H., Rezaei S.M., Rahimi A.,	V, Technologies In Machine Building, 2012 Analysis of the Disc Dressing Effects on Grinding Performance – Part 1:
15	Saadat M.	Simulation of the Disc Dressed Wheel Surface, Machining Science and
	Saudat Wi.	Technology, 2008, 12(2):183–196
14	Baseri, H., Alinejad, G.	ANFIS Modeling of the Surface Roughness in Grinding Process, World
	Duseri, II., Thinejud, C.	Academy of Science, Engineering and Technology, 2011
15	Baseri H., Rezaei S.M., Rahimi A.,	Analysis of the Disc Dressing Effects on Grinding Performance – Part 2:
	Saadat M.	Effects of the Wheel Topographical Parameters on the Specific Energy
		and Workpiece Surface Roughness, Machining Science and Technology,
		2008, 112(2):197–213
16	Beju, L.D., Brîndaşu, P.D.,	Desing of Modern Rotating Tools, Published by Faculty of Technical
	Milojevic, Z., Zivkovic, A.	Sciences, Novi Sad, 2014
17	Beju, L.D., Brîndaşu, P.D., Vulc, S.	Grinding Tungsten Carbide Used for Manufacturing Gun Drills, Journal
		of Mechanical Engineering, Strojniški vestnik, Volume, 2015
10		
18	Berce, P., Bâlc, N., Ancău, M.	Fabricarea Rapidă a Prototipurilor, Edit. Tehnică, București, 2000
19	Bell, A., Jin, T., Stephenson, D. J.	Burn Threshold Prediction for High Efficiency Deep Grinding,
		International Journal of Machine Tools & Manufacture, Volume 51, Issue 6, June 2011, pp.433-438
20	Biddut I.A.Q., Rahman M., Neo	<i>Performance of single crystal diamond tools with different rake angles</i>
20	K.S., Rezaur Rahman K.M., Sawa	during micro-grooving on electroless nickel, International Journal of
	M., Maeda Y.	Advanced Manufacture Technology, 2007, 33:891–9
21	Brinksmeier E., Aurich J.C., Govekar	Advances in Modelling and Simulation of Grinding Processes, Annals of

	E., Heinzel C.	the CIRP 55(2), (2006), pp. 667–696
22	Brinksmeier E., Cinar M.	Characterization of Dressing Parameters by Determination of the Collision Number of the Abrasive Grit, Annals of the CIRP 44(1), (1995), pp.299–304
23	Brîndaşu P.D., Cernuşcă D.	<i>Îndrumar de proiectare burghie pentru găuri adânci</i> , Edit. Universității din Sibiu, 1993
24	Brîndaşu, P.D., Beju, L.D.	Scule așchietoare, Edit. Universității "Lucian Blaga" din Sibiu, 2012
25	Borzan, M., Hancu, L., ş.a.	Study of the ZK4 Worm Grinding Process, Annals of MteM for 2007
26	Brown C.A., Hahn R.S., St. Gelais R.M., Powers B., Geiger D.J., Bergstrom T.S.	<i>Grinding Wheel Texture and Diamond Roll Plunge Dressing Feed-rates,</i> ISAAT, 2007
27	Butler-Smith P.W., Axinte D.A., Daines M.	Preferentially oriented diamond microarrays: a laser patterning technique and preliminary evaluation of their cutting forces and wear
		<i>characteristics</i> , International Journal of Machine Tools & Manufacture, 2009, 49:1175–84
28	Cofaru, N.F.	<i>Contribuții privind modelarea procesului de uzare abrazivă</i> , Teză de
-		doctorat, Cluj-Napoca, 1999.
29	Chang W. T., Chen T. H., Tarng Y. S.,	Measuring Characteristic Parameters of Form Grinding Wheels Used for Microdrill Fluting by Computer Vision, Transactions of the Canadian Society for Mechanical Engineering, Vol. 35, No. 3, 2011
30	Chang, H. C., Junz Wang J.	A Stochastic Grinding Force Model Considering Random Grit
2.1		<i>Distribution</i> , International Journal of Machine Tools and Manufacture, 2008 ,vol. 48, pp. 1335–1344
31	Changcai Cui, Xipeng Xu, Hui Huang, Jie Hu, Ruifang Ye, Lijun	Extraction of the grains topography from grinding wheels, MOE Engineering Research Center for Brittle Materials Machining, Huaqiao
	Zhou, Chunqi Huang	University, Xiamen 361021, China, Measurement 46, 2013 484–490
32	Chen H., Li J.C.M.	Anodic Metal Matrix Removal Rate in Electrolytic In-Process Dressing
		I,II: Two-Dimensional Modeling. Protrusion Effect and Three
		<i>Dimensional Modeling</i> Journal of Applied Physics, 2000, 87(6):3151–3158; 3159–3164
33	Chen M, Ma Y.A., Liu G., Xiang	Resin Bonded CBN Grinding Wheel Dressing by Laser, Simulation and
	D.H., Sun F.H.	Experiment. Key Engineering Materials, 2006, 304-305:38-42
34	Chen M., Sun F., Liu G., Jian X., Li X.	Theoretical and Experimental Research on Generation Mechanism of Grinding Wheel Topography by Laser Dressing and 3D Laser Scanning, Key Engineering Materials, 2003, 233–236:497–502
35	Chen W.K.	Loose Abrasive Truing and Dressing of Resin Bond Diamond Cup Wheels
		for Grinding Fiber Optic Connector, Journal of Materials Processing Technology, 2005, 159:229–239
36	Chen X., Rowe B.	Analysis and Simulation of the Grinding Process, Part 1: Generation of the Grinding Wheel Surface, International Journal of Machine Tools & Manufacture, 1996, 36(8):871–882.
37	Chockalingam, P., Kok, K.,	Effect of Coolant on Cutting Forces and Surface Roughness in Grinding of
	Vijayaram, R	<i>CSM GFRP</i> , World Academy of Science, Engineering and Technology, 2012
38	Comley, P., Stephenson, D.J., ş.a.	High – efficiency deep grinding and the effect on surface integrity, 2004
39	Crețu, Gh.	Metode de cercetare experimentală, Ed. Tehnică, Info Chișinău, 2000
40	Cui C. , Xu X., Huang H., Hu J., Ye R., Zhou L., Huang C.	<i>Extraction of the grains topography from grinding wheels</i> , Measurement 46, 2013, pp. 484–490
41	Deacu, L., Kerekes, L., Julean, D., Cărean, M.	Bazele așchierii și generării suprafețelor, Univ. Tehnică, Cluj-Napoca, 1992
42	Dabrowski L., Marciniak M.	<i>Efficiency of Special Segmental Grinding Wheel</i> , Journal of Materials Processing Technology, 2001, pp. 264–269
43	Denkena B., Boehnke D., Wang B.	Manufacturing of Functional Microstructured Surfaces by Grinding with Vitrified SiC- and cBN-wheels, International Journal of Abrasive Technology, 2009, pp. 207–222
44	Denkena B., de Leon L., Wang B.	Grinding of Microstructured Functional Surfaces: a Novel Strategy For Dressing of Microprofiles, Production Engineering Research and
45	Denkena B., Leon D.L., Wang B., Hahmann D.	Development (WGP), 2009, pp. 41–48 Development in the Dressing of Super Abrasive Grinding Wheels, Key Engineering Materials, 2010, pp. 404:1–10

46	Derkx J.	High Precision Form Crush Profiling of Diamond Grinding Wheels, PhD- thesis, TU Delft NL., 2008
47	Dingemans, P.	Gundrilling – an Overview of its Theory and an Analisys of its Performance as compared to spiraldrilind, Teza de Doctorat, Avans Hogeschool Breda, 2004
48	Doman, D.A., Warkentin A, Bauer, R	A Survey of Recent Grinding Wheel Topography Models. International Journal of Machine Tools & Manufacture, 2006, pp. 343–352
49	Dulămiță, T., ș.a.,	Oțeluri de scule, Ed. Tehnică, București, 1990
50	Duscha M., Klocke F., d'Entremont A., Linke B., Wegner H.	Investigation of temperatures and residual stresses in speed stroke grinding via FEA simulation and practical tests, Proceedings in
5 1		Manufacturing Systems, Vol. 5, 2010, No. 1 / 1-10
51 52	Elekes C. Feng J., Kim B.S., Shih A., Ni J.	<i>Scule pentru găurirea alezajelor lungi</i> , Edit. Scrisul Românesc, 1985 <i>Tool wear monitoring for micro-end grinding of ceramic materials</i> , <i>Journal of Materials Processing Technology</i> 200, 2000, 5110, 5116
53	Feng Z., Chen X.	Journal of Materials Processing Technology 209, 2009, 5110–5116 <i>Image Processing of Grinding Wheel Surface</i> , International Journal of Advanced Manufacturing Technology, 2007, pp. 452–458
54	Fujimoto M., Ichida Y.	Micro Fracture Behavior of Cutting Edges in Grinding Using Single Crystal CBN Grains, Diamond and Related Materials, 2008, pp. 17(7– 10):1759–1763
55	Fujimoto M., Ichida Y., Sato R., Morimoto Y.	<i>Characterization of Wheel Surface Topography in CBN Grinding</i> , JSME International Journal Series C, 2006, pp. 106–113
56	Gao Y.,	Use of actively cooled and activated coolant for surface quality
	Lai, H.	improvement in ductile material grinding, 2008
57	George, L.P., Varughese Job, K., Chandran, I. M.	Study on Surface Roughness and its Prediction in Cylindrical Grinding Process based on Taguchi method of optimization, International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013 1 ISSN 2250-3153
58	Ghosh A., Chattopadhyay A.K.	On Cumulative Depth of Touch-dressing of Single Layer Brazed CBN Wheels with Regular Grit Distribution Pattern. Machining Science and Technology, 2007, pp. 11(2):259–270
59	Giurăscu, C.C.	Contribuții la istoria științei și tehnicii românești în sec.XV-XIX. București, Ed. Stiințifică, 1973.
60	Gostimirovic, M., Kovac, P., Sekulic, M., Savkovic B.	An Inverse Heat Transfer Method For Determination Of The Workpiece Temperature In Grinding, Journal Of Production Engineering, Vol.12, 2009, Number 1, University Of Novi Sad
61	Guo C., Campomanes M., Mcintosh D., Becze C.	Model-based Monitoring and Control of Continuous Dress Creep-feed Form Grinding. Annals of the CIRP, 2004, pp. 53/1:263–266
62	Guo, C., Wu, Y., Varghese, V., Malkin, S.	<i>Temperatures and energy partition for grinding with vitrified CBN wheels,</i> Annals of the CIRP, 48/1, 1999, 247-250.
63	Guseinov G. A., Bagirov S. A.	Grinding Wheel with Grains of Different Sizes - Russian Engineering Research, 2009, Vol. 29, No. 7, pp. 690–692.
64	Haifeng, C., Jinyuan T., Wei, Z.	Modeling and predicting of surface roughness for generating grinding gear, Journal of Materials Processing Technology 213, 2013, 717–721
65	Harimkar S.P., Dahotre N.B.	<i>Evolution of Surface Morphology in Laser-Dressed Alumina Grinding</i> <i>Wheel Material</i> , International Journal of Applied Ceramic Technology, 2006, pp. 3(5):375–381
66	He L., Li X., Wang G., Rong Y.	A Preliminary study on an improved grinding process integrated with induction heating technology, Transactions of NAMRI/SME, May, 2010, Volume 38, pp. 121-126
67	Hecker, RL., Liang, SY.	Predictive modeling of surface roughness in grinding, International Journal of Machine Tools and Manufacture 43/8, 2003, pp. 755-761.
68	Hecker, RL., Ramoneda, IM., Liang, SY.	Analysis of wheel topography and grit force for grinding process modeling, Journal of Manufacturing Processes 5/1, 2003, 13-23.
69	Herman, Daniela, Krzos, J.	Influence of vitrified bond structure on radial wear of CBN grinding wheels
70	Hesselbach, J., Hoffmeister, H.W.,	Journal of Materials Processing Technology 209, 2009, pp. 5377–5386 Surface grinding with cryogenics, Production Enginering, XI/2, 2004
71	s.a. Hitoshi, O., Masaki K., s.a.	Fabrication of New Porous Metal-Bonded Grinding Wheels by HIP Method and Machining Electronic Ceramics, 1997
72	Masaki, K., s.a. Hodges, H.W.M., Artifacts	An Introduction to Primitive Technology, F.A. Praeger, New York, 1964

73	Hoffmeister H.W., Hlavac M.	<i>Truing of Micro-grinding Wheels by Diamond Tools</i> , ASPE Annual Meeting, 2006, pp. 467–470
74	Hosokawa A., Ueda T., Yunoki T.	<i>Laser Dressing of Metal Bonded Diamond Wheel</i> , Annals of the CIRP 55(1), 2006, pp. 329–332
75	Hou, Y. L., Li, C. H., Zhang, Q.	Investigation of Structural Parameters of High Speed Grinder Spindle System on Dynamic Performance, Int. J. Materials and Product Technology, 2012 ,vol. 44, no. 1/2, , pp. 92-114.
76	Huang H., Liu T. C.	<i>Experimental Investigations of Machining Characteristics and Removal</i> <i>Mechanisms of Advanced Ceramics in High Speed Deep Grinding,</i> International Journal of Machine Tools & Manufacture, vol. 43, no. 8, 2003, pp. 811-823
77	Inasaki I.	A New Preparation Method for Resinoid-Bonded CBN Wheels, Annals of the CIRP 39(1), 1990, pp. 317–320
78	Ință Marinela	Contribuții privind monitorizarea proceselor și a echipamentelor pentru așchierea metalelor, Teză de doctorat, Sibiu, 2010
79	Ispas, C., Simion, F.P.	Vibrațiile mașinilor-unelte, Ed. Academiei, București, 1986
80	Izumi, M., Ochi, A.,	Sizing Method Based on Grinding Ratio in Heavy Grinding, American Society for Precision Engineering, 2004,
81	Jackson M.J., Khangar A., Chen X., Robinson G.M., Venkatesh V.C., Dahotre N.B.	Laser Cleaning and Dressing of Vitrified Grinding Wheels, Journal of Materials Processing Technology, 2007, pp. 185(1–3):17–23
82	Jiang Z.	Machining Feature Based Geometric Modeling of Twist Drills, Department of Mechanical & Industrial Engineering, 2011
83	Jiao F., Zhao B., Zhu X.S., Fan Q.T.	Ultrasonic Dressing of Grinding Wheel and its Influence on Grinding Quality, Key Engineering Materials, 2006, pp. 304–305:62–65
84	Jin T., Cai G. Q.	Analytical thermal models of oblique moving heat source plane for deep grinding and cutting, ASME Journal of Manufacturing Science and Engineering, vol. 123, no. 1, 2001, pp. 185-190
85	Kamely, M.A., Kamil, S.M., Chong, C.W.	Mathematical Modeling of Surface Roughness in Surface Grinding Operation, International Journal of Engineering and Natural Sciences 5:3 2011
86	Kang R.K., Yuan J.T., Zhang Y.P., Ren J.X.	<i>Truing of Diamond Wheels by Laser</i> , Key Engineering Materials, 2001, pp. 202–203:137–142
87	Karpuschewski B., Knoche H.J., Hipke M.	<i>Gear Finishing by Abrasive Processes</i> , Annals of the CIRP, 2008, pp. 57(2):612–640
88	Karpuschewski B., Wehmeier, M., Inasaki, I.	Grinding Monitoring System Based on Power and Acoustic Emission Sensors, Annals of the CIRP, 2000
89	Khangar A., Dahotre N.B., Jackson	Laser Dressing of Alumina Grinding Wheels, Journal of Materials
90	M.J., Robinson G.M. Khudobin, L.V., Unyanin, A.N.	Engineering and Performance, 2006, pp. 15(2):178–181 Improved Performance of Grinding Wheels in Machining Plastic Steel and
91	Kim H.J., Kim S.R., Ahn J.H., Kim S.H.	Alloy Blanks, Russian Engineering Research, 2008 Process Monitoring of Centerless Grinding Using Acoustic Emission, Journal of Materials Processing Technology, 2001, 111(April (1–3)), pp. 273–278
92 02	King, R. Kiruthika Davi Sundarraian	Strategia cercetării, Editura Polirom, Iași, 2005
93	Kiruthika Devi Sundarrajan	Study Of Grinding Burn Using Design Of Experiments Approach And Advanced Kaizen Methodology, A Thesis, Manufacturing Systems Engineering, Lincoln, Nebraska, May, 2012
94	Klink A.	<i>Wire Electro Discharge Truing and Dressing of Fine Grinding Wheels</i> , Annals of the CIRP, 2010, pp. 59:235–238
95	Klocke F., Konig W.	<i>Fertigungsverfahren-Schleifen</i> , Springer Verlag, Honen, Lapen, Band 2, Auflage 4, (2005), ISBN: 978-3-540-23496-8.
96	Klocke F., Zeppenfeld C., Linke B.	<i>Verschleiß-ausbildung an Diamantformrollen</i> , wt. Werkstattstechnik Online, 2006, pp. 96(6):372–376
97	Koshin, A.A., Chaplygin, B.A., ş.a.	The Design of Abrasive Machining Operations, 2011
98	Koshy P., Ives L., Jahanmir S.	Simulation of Diamond-ground Surfaces, International Journal of Machine Tools & Manufacture, 1999, pp. 39:1451–1470
99	Krar, S.F., Ratterman, E.	Superabrasives: grinding and machining with CBN and diamond,

100	Kruszynski, B.W., Lajmert, P.	<i>McGraw-Hill</i> , New York, 1990. <i>An Intelligent Supervision System for Cylindrical Traverse Grinding,</i> Annals of the CIRP, 1998
101	Kunieda Y., Matsuura H., Kodama S., Yoshihara N., Yan J., Kuriyagawa T.	Development of a New Laser Conditioning Method for Ultra-Fine Grit Diamond Wheels, Key Engineering Materials, 2007, pp. 329:175–180
102	Lachance S., Bauer R., Warkentin A.	Application of Region Growing Method to Evaluate the Surface Condition of Grinding Wheels, International Journal of Machine Tools & Manufacture, 2004, pp. 44:823–829
103	Lee E.S., Chun Y.J., Kim N.K.	A Study on the Optimum Condition Selection of Rotary Dressing System of Ultra-precision Centerless Grinding Machine for Ferrule, Advances in Abrasive Technology, 2005, VIII pp. 291–292:189–194
104	Lei Zhang	Numerical Analysis and Experimental Investigation of Energy Partition and Heat Transfer in Grinding, licensee InTech, 2012
105	Lezanski P.	An Intelligent System for Grinding Wheel Monitoring, Journal of Materials Processing Technology, 2001, pp. 109:258–263
106	Li J., Li J.C.M.	<i>Temperature distribution in workpiece during scratching and grinding,</i> International Journal of Materials Science and Engineering 2005, vol. 409, pp. 108–119
107	Li, X., Rong, Y.	Framework of Grinding Process Modeling and Simulation Based on Microscopic Interaction Analysis, Robotics and Computer-Integrated Manufacturing 27, 2011, pp. 471–478
108	Liao W.T., Ting C.F., Qu J., Blau P.J.	A Wavelet-based Methodology for Grinding Wheel Condition Monitoring, International Journal of Machine Tools & Manufacture, 2007, pp. 47:580– 592
109	Lierse T., Kaiser M.	<i>Dressing of Grinding Wheels for Gear wheels</i> , IDR (Industrial Diamond Review), 2002, 4/02, pp. 273–281
110	Lim H.S., Fathima K., Kumar A.S., Rahman M.	A Fundamental Study on the Mechanism of Electrolytic In-process Dressing (ELID) Grinding. International Journal of Machine Tools & Manufacture, 2002, pp. 42(8):935–943
111	Lin B., Wu H., Zhu H. T., Yu S. Y.	Study on Mechanism for Material Removal and Surface Generation by Molecular Dynamics Simulation in Abrasive Processes, Key Engineering Materials, 2004, pp. 259-260: 211-215
112	Linke B., Glocke F.	Dressing Process Model for Vitrified Bonded Grinding Wheels, Annals of the CIRP, 2008, pp. 57(1):345–348
113	Linke B., Klocke F., Zeppenfeld C.	<i>Mikro-verschleiβ-mechanismen an Diamantformrollen</i> . Diamond Business, 2006, pp. 4:60–64
114	Maksoud T.M.A., Atia, M.R., Koura, M.M.	Applications of artificial intelligence to grinding operations via neural networks, Machining Science and Technology, 2003
115	Malkin S., Guo C.	Grinding Technology – Theory and Applications of machining with Abrasives, second ed. Industrial Press, New York. (Chapter 4), 2008
116 117	Malkin, S. Hwang, T.W. Mamalis, A.G., Kundrak, J., Manolakos, D.E., Gyani, K., and Markopoulos, A.	Grinding mechanisms for ceramics, 1996 Thermal Modelling of Surface Grinding Using Implicit Finite Element Techniques, International Journal of Advance Manufacturing Technologies, (2003), vol. 21, pp.929–934
118	Mamun A.A., Dhar N.R.	Numerical Modeling of Surface Roughness in Grinding under Minimum Quantity Lubricants (MQL) using Response Surface Method (RSM), Global Journal of Researches in Engineering Mechanical and Mechanics Engineering, 2012, Volume 12 Issue 5 Version 1.0
119	Marinescu, I.D., Rawe, W.B., Dimitrov, B., Inasaki, I.	Tribology of Abrasive Machining Process, William Andrew Publishing, Norwich, New York, 2004
120	Marinescu, I.D., Hitchiner, M., Uhlmann, E., Rowe B., Inasaki, I.	Handbook of Machining with GrindingWheels, CRC Press, Boca Raton 2006
121	McSpadden, S., Hughe, S.A	Systematic Method for Grinding Wheel Performance Evaluation, http://web.ornl.gov/~webworks/cppr/y2001/pres/116758.pdf.
122 123	Minciu O. Mohammed, Y., Fazlur Rahman, J.	Maşini unelte cu comandă numerică, București, Edit. Tehnică, 1985 Parametric influence on cutting parameters characteristics in precision machining of ceramic coating materials, International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 1 ISSN 2229- 5518
124	Muțiu N.C.	Contributii Privind Proiectarea și Prelucrarea Asistată de Calculator a

125	Nadolny, K.	unor Scule cu Canale Profilate, pentru Prelucrarea Alezajelor, Teza de doctorat, Sibiu, 2007 Durability of Al ₂ O ₃ grinding wheels with zone-diversified structure in single-pass internal cylindrical grinding, Advances in Manufacturing
126	Nguyen A.T., Butler D.L.	Science and Technology vol. 35, no. 3, 2011 Simulation of Precision Grinding Process – Part 2: Interaction of the Abrasive Grain with the Work Piece, International Journal of Machine Tools & Manufacture, 2005, pp. 45:1329–1336
127	Nguyen A.T., Butler D.L.	Correlation of Grinding Wheel Topography and Grinding Performance: A Study From a Viewpoint of Three-dimensional Surface Characterization, Journal of Materials Processing Technology, (2008), 208(1–3):14–23
128	Nomura M., Wu Y., Kuriyagawa T.	Investigation of Internal Ultrasonically Assisted Grinding of Small Holes; Effect of Ultrasonic Vibration in Truing and Dressing of Small CBN Grinding Wheel, Journal of Mechanical Science and Technology, 2007, pp. 21:1605–1611
129	Nosenko V. A., Fedotov E. V., Nosenko S. V., Danilenko M. V.	<i>Probabilities of Abrasive Tool Grain Wearing during Grinding</i> , Journal of Machinery Manufacture and Reliability, 2009, Vol. 38, No. 3, pp. 270–276.
130	Nosenko V. A., Fedotov E. V., Savin, A.I.	Probabilistic Model of the Grain-Tip Distribution at the Working Surface of a Grinding Wheel, Russian Engineering Research, 2007, Vol. 27, No. 10, pp. 707–712.
131 132	Noveanu, E. Oancea, N.	Metodologia cercetării experimentale, E.D.P. București, 2007 Bazele aschierii și generarii suprafețelor, Rotaprint, Universitatea Galați, 1978.
133	Ohmori H., Katahira K., Naruse T., Uehara Y., Nakao A., Mitzutani M.	<i>Microscopic Grinding Effects on Fabrication of Ultra-fine Micro Tools</i> , Annals of the CIRP, 2007, pp. 56(1):569–572
134	Okuyama, S., Nishilhara, T., Kawamura, S., Hanasaki, S.	Study on the Geometrical Accuracy in Surface Grinding- Thermal Deformation of Workpiece in Traverse Grinding, Intrnational Journal Japan Soc. Prec. Eng., 1994
135	Oliveira J.F., Bottene A.C., Franca T.V.	A Novel Dressing Technique for Texturing of Ground Surfaces, Annals of the CIRP, 2010, pp. 59(1):361–364
136	Olovsjö, S., Wretland, A., ş.a.	The effect of grain size and hardness of wrought Alloy 718 on the wear of cemented carbide tools, 2010
137	Olovsjö, S.	On the Effect of Grain Size and Hardness on the Machinability of Superalloys and Chip Deformation, Institutionen för material- och tillverkningsteknik, Chalmers tekniska högskola, 2009
138	Oniță, G.	Proiectarea unei scule de frezat inteligente pentru menținerea calității procesului de frezare, Teză de Doctorat, ULB Sibiu, 2014
139	Opitz, H.	Moderne productionstehnic. Stand und Tendenzen, Essen, Verlag W. Girardet, 1971.
140	Oprean, C. ş.a.	Bazele așchierii și generării suprafețelor, București, Ed.didactică și pedagogică, 1981
141	Ortega N., Sanchez J.A., Aranceta J., Maranon J.A., Maidagan X.	Optimisation of Grit Protrusion in the Electro-Discharge Dressing Process of Large Grit Size CBN Grinding Wheels, Journal of Materials Processing Technology, 2004, pp. 149:524–529
142	Pai, D., Shrikantha S. R., D'Souza, R.	Multi Objective Optimization of Surface Grinding Process by Combination of Response Surface Methodology and Enhanced Non- dominated Sorting Genetic Algorithm, International Journal of Computer Applications (0975 – 8887) Volume 36– No.3, December, 2011
143	Pal, D., Bangar, A., Sharma, R., Yadav, A.	<i>Optimization of Grinding Parameters for Minimum Surface Roughness</i> <i>byTaguchi Parametric Optimization Technique</i> , International Journal of Mechanical and Industrial Engineering (IJMIE), ISSN No. 2231–6477, Volume-1, Issue-3, 2012
144	Patnaik Durgumahanti, U.S., Vijayender, Singh, Venkateswara	A New Model for Grinding Force Prediction and Analysis, International Journal of Machine Tools & Manufacture 50 (2010) 231–240.
145	Rao, P. Pinto F.W.	An Experiment and Numerical Approach to Investigate the Machining Performance of Engineered Grinding Tools, Dissertation, ETH Zurich, 2008
146	Qian J., Li W., Ohmori H.	Precision Internal Grinding with a Metal- Bonded Diamond Grinding 65

147	Qian J., Ohmori H., Lin W.	<i>Wheel</i> , Journal of Materials Processing Technology, 2000, pp. 105:80–86 <i>Internal Mirror Grinding with a Metal/metal–resin Bonded Abrasive</i> <i>Wheel</i> , International Journal of Machine Tools & Manufacture, 2001, pp. 41:193–208
148	Qiang, L., Xun, C., Gindy, N.	Assessment of Al2O3 and superabrasive wheels in nickel-based alloy grinding. Int J Adv Manuf Technol, International Journal Of Advanced Manufacturing Technology, 2007
149	Rabiey M.	Dry Grinding with CBN Wheel, the Effect of Structuring, Dissertation, University of Stuttgart, 2010
150	Radzevich, S.P., Krehel, R.	Determination of the grinding wheel profile and its setup for use in finishing cylindrical gears with an evolvent profile, 2012
151	Rahman M.S., Saleh T., Lim H.S., Son S.M., Rahman M.	Development of an On-machine Profile Measurement System in ELID Grinding for Machining Aspheric Surface with Software Compensation, International Journal of Machine Tools & Manufacture, 2008, pp. 48(7– 8):887–895
152	Repko, A.V., Smirnov, V. A.	<i>Efficient Plane Grinding by the Wheel periphery with elastically damping elements</i> , Russian Engineering Research, 2008
153	Rhoney B.K., Shih A.J., Scattergood R.O., Ott R., McSpadden S.B.	Wear Mechanism of Metal Bond Diamond Wheels Trued by Wire Electrical Discharge Machining, Wear, 2002, pp. 252:644–653
154	Robles, J. B., Jauregui J. C., Krajnik, P., Sevilla, P. Y., Herrera G.	Nonlinear Model for the Instability Detection in Centerless Grinding Process, Journal of Mechanical Engineering 58, 2012, pp. 693-700
155	Rowe, W.B.	<i>Thermal analysis of high efficiency deep grinding</i> , International Journal of Machine Tools & Manufacture, 2001, Vol. 41(1), pp.1–19
156	Safonova, M.N., Syromyatnikova, A.S., Shits, E. Yu.	<i>Computational Experimental Method for Determining the Number of</i> <i>Active Grains in Abrasive Composite Material</i> , Journal of Friction and Wear, 2007, Vol. 28, No. 5, pp. 434–439.
157	Saini, D.P.	Elastic Deflections in Grinding, Annals of the CIRP 29 (1), 1980
158	Saleh T., Rahman S.M., Lim H.S., Rahman M.	Development and Performance Evaluation of an Ultra Precision ELID Grinding Machine, Journal of Materials Processing Technology, 2007, pp. 192–193:287–291
159	Salisbury E., Domala K., Moon K., Miller M., Sutherland J.	A Threedimensional Model for the Surface Texture in Surface Grinding, Part 1 Surface Generation Model and 2 Grinding Wheel Surface Texture Model, Transaction of ASME, 2001, pp. 123:576–581; 582–590
160	Salje, E.	Begriffe der Schleif- und Konditioniertechnik, Vulkan, Essen, 1991
161	Salje E., Harbs U.	Scharfen Kunstharzgebundener CBN-Profilschleifscheiben mit Korundblock und mit Strahl, Jahrbuch Schleifen, Honen. Lappen und
1.60		Polieren, 1990, pp. 56:202–216
162	Samuel Karanja Kabini, Dr. Bernard Wamuti Ikua, Dr. George Nyauma Nyakoe	<i>Recent Trends in Modeling and Control of Chatter Vibration in</i> <i>Cylindrical Plunge Grinding Process</i> , International Journal of Advances in Engineering, Science and Technology, Vol. 2 No. 3 Aug-Oct, 2012
163	Sanchez J.A., Pombo I., Cabanes 1., Ortiz R., Lopez de Lacalle L.N.	<i>Electrical Discharge Truing of Metal-bonded CBN Wheels using Single-</i> <i>Point Electrode</i> , International Journal of Machine Tools & Manufacture, 2008, pp. 48:362–370
164	Sanjay Agarwal, Venkateswara Rao, P.	Predictive modeling of undeformed chip thickness in ceramic grinding, International Journal of Machine Tools & Manufacture 56, 2012, pp. 59–68
165	Saravanapriyan S.N.A., Vijayaraghavan L., Krishnamurthy R.	<i>Performance Evaluation of Treated Grinding Wheels</i> , Materials Science Forum, 2003, pp. 437–438:325–328
166	Schopf M, Beltrami I, Boccadoro M, Kramer D, Schumacher B	A New Method for Truing and Dressing of Metal Bonded Diamond Grinding Tools, Annals of the CIRP, 2001, pp. 50(1):125–128
167	Shafto, G.R., Howes, T.D., Andrew, C.	<i>Thermal Aspects of Creep Feed Grinding</i> , Proceedings of the Sixteenth International Machine Tool Design and Research Conference, 1975
168 169	Shaw, M.C. Shipulin L.V.	Metal Cutting Principles, Oxford, Claredon Press, 1986 Complex Model of Surface Grinding, Proceedings of the International MultiConference of Engineers and Computer Scientists 2012, Vol. II, IMECS 2012, March 14 - 16, 2012, Hong Kong
170	Sinot O., Chevrier P., Padilla P.	Experimental Simulation of the Efficiency of High Speed Grinding Wheel Cleaning, International Journal of Machine Tools & Manufacture, 2006,
171	Sorokin G.M., Malyshev V.N.	pp. 46:170–175 Influence of the mechanical characteristics of steel on the abrasive

		<i>wear and frictional coefficient</i> , Russian Engineering Research, October 2008, Volume 28, Issue 10, pp 935-938
172	Stephane L., Bauer R., Warkentin A.	Application of region growing method to evaluate the surface condition of grinding wheels, International Journal of Machine Tools & Manufacture
173	Stephenson D.J., Sun X., Zervos C.	44, (2004), 823–829 A Study on ELID Ultra Precision Grinding of Optical Glass with Acoustic Emission, International Journal of Machine Tools & Manufacture, 2006,
174	Stepien P.	pp. 46:1053–1063 <i>Grinding Forces in Regular Surface Texture Generation</i> , International Journal of Machine Tools & Manufacture, 2007, pp. 47(14):2098–2110
175	Sugihara T., Enomoto T.	<i>Envelopment of a cutting tool with a nano/microtextured surface—</i> <i>improvement of anti-adhesive effect by considering the texture patterns</i> , Precision Engineering, 2009, pp. 33:425–9
176	Sundarrajan, K. D.	Study of Grinding Burn Using Design of Experiments Approach and Advanced Kaizen Methodology, Industrial and Management Systems
177	Suryarghya, C., Paul, S.	Engineering – Dissertations and Student, 2012, Research. Paper 26. Numerical Modelling of Surface Topography in Superabrasive Grinding, International Journal Advanced Manufactoring Technologies, 2008
178	Suzuki K., Iwai M., Uematsu T., Sharma A.	<i>Development of a Grinding Wheel with Electrically Conductive Diamond Cutting Edges</i> , Advances in Abrasive Technology, 2004, VI 257–258, pp. 239–244
179	Suzuki K., Ninomiya S., Iwai M., Tanaka Y., Murakami Y., Sano S., Tanaka K., Uematsu T.	Attempt of Electrodischarge Grinding with an Electrically Conductive Diamond-cutting-Edge Wheel, Key Engineering Materials, 2005, pp. 291–292:63–66
180	Ștețiu G., Lazărescu, I., Oprean, C. și Ștețiu M.	<i>Teoria și practica sculelor așchietoare</i> . Vol.I,II,III, Sibiu, Editura Universității, 1994.
181	Tanovic, L., Bojanic, P., Popovic, M., Belic, Z., Trifkovic, S.	<i>Mechanisms in oxide-carbide ceramic BOK 60 grinding</i> - International Journal Advanced Manufactoring Technologies, 2012
182	Tawakoli T., Rabiey M.	Innovatives Schleifscheibenkonzept zum Trockenschleifen auf dem Vormarsch, Industrie Diamanten Rundschau (IDR), 2006, pp. 3:30–35
183	Tawakoli T., Rasifard A.	Ultraschalunterstutzes Abrichten von CBN Schleifscheiben mit Formrollen, Seminar. Moderne Schleiftechnologie und Feinstbearbeitung, 2010, pp. 18-1–18-19
184	Tawakoli T., Reinecke H., Vesali A.	An Experimental Study on the Dynamic Behavior of Grinding Wheels in High Efficiency Deep Grinding, 5th CIRP Conference on High Performance Cutting, Procedia CIRP 1, 2012, pp. 382 – 387
185	Tawakoli, T., Hadad, M., Sadeghi, M.H., Daneshi, A., Sadeghi, B.	Minimum quantity lubrication in grinding: effects of abrasive and coolant- lubricant types, Journal of Cleaner Production, 19, 2011, pp. 2088–2099
186	Tawakoli, T., Westkaemper, E., Rabiey, M.	<i>Dry grinding by special conditioning</i> , International Journal of Advanced Manufacturing Technology, 33, 2007, pp. 419–424
187	Tonshoff H. K., Friemuth T., Becker J. C.	<i>Process Monitoring in grinding</i> , Annals of the CIRP, vol. 51, no. 2, 2002, pp. 551-569
188	Tonshoff H. K., Karpuschewski B., Mandrysch T.	Grinding Process Achievements and their Consequences on Machine Tools Challenges and Opportunities, Annals of the CIRP, vol. 47, no. 2, 1998, pp. 651-668
189	Torrance A.A., Badger J.A.	The Relation Between the Traverse Dressing of Vitrified Grinding Wheels and Their Performance, International Journal of Machine Tools & Manufacture, 2000, pp. 40:1787–1811
190	Torrance, A.	Wear of Grinding Wheels – Software for their Selection, Dept. of Mechanical & Manufacturing Engineering, Trinity College, Dublin
191	Tuffy K. Linke B. Sullivan M.	The Effect of Dressing Parameters and Grit Size Selection for Vitrified Superabrasive Wheels for High Specific Grinding Energy Applications, Industrial Diamond Review, 2006, pp. 66(2), 59–63
192	Varghese B., Hare S. P., Gao R., Guo C., Malkin S.	Development of a Sensor-Integrated 'Intelligent' Grinding Wheel for In- Process Monitoring, Annals of the CIRP, vol. 49, no. 1, 2000, pp. 265-270
193	Voicu S.M.	Contribuții privind generarea tehnologiei de prelucrare pe mașini cu comandă numerică prin intermediul calculatorului, a frezelor cilindro- frontale profilate, Teză de doctorat, Univ. Tehnică din Cluj-Napoca, 1998
194	Voicu S.M., Muțiu N.C., Brîndașu D.	Proiectarea asistată și execuția burghielor pentru găuri adânci pe MU- CN asistate de computer, Conferința internațională de inginerie integrată C2I, Timișoara, 2002

195	Voineagu, V., Colibaba, D., Grădinaru, G.	Statistica. Noțiuni fundamentale și aplicații, Editura ASE, București 2002
196	Vulc, S	<i>Grinding surfaces of the carbide drills for deep holes</i> , the 11 th International Conference of Modern Technologies in Manufacturing, Cluj
197	Vulc, S., Brîndaşu, P.D., Beju, L. D., Ință, M.	Napoca, 2013 Optimization of grinding process parameters for DK460UF carbide using Design - Expert software, Academic Journal of Manufacturing Enginering, 2013
198	Vulc, S., Brîndaşu, P.D., Beju, L. D.	A Parameters Synthetis of Grinding Process Modelling for Carbide Drills Deep Holes and Small Diameter, IMT Oradea, 2013
199	Vulc, S., Brîndaşu, P.D.	Study of the surface roughness of carbide blanks processed by grinding, the 11 th International Conference of Modern Technologies in Manufacturing, Cluj Napoca, 2013
200	Wang S., Li C. H.	Application and Development of High-efficiency Abrasive Process, International Journal of Advanced Science and Technology Vol. 47, October, 2012
201	Wang X.Y., Kang R.K., Xu W.J.,	Modeling of Laser Dressing for Metal-bond Diamond Grinding Wheel,
	Wang L.J., Guo D.M.	Key Engineering Materials, 2007, pp. 329:145-150
202	Warkentin A., Bauer R.	Analysis of Wheel Wear Using Force Data in Surface Grinding, Transaction of the CSME/de la SCGM, 2003, pp. 27(3):193–204.
203	Warnecke G., Zitt U.	Kinematic Simulation for Analyzing and Predicting High-Performance
204	Wagapar V Haffmaistar H W	Grinding Processes, Annals of CIRP, vol. 47, no. 1, 1998, pp. 265 -270
204	Wegener K., Hoffmeister H.W., Karpuschewski B., Kuster F., Hahmann W.C.	Conditioning and monitoring of grinding wheels, CIRP Annals - Manufacturing Technology 60, 2011, pp. 757–77
205	Weingartner E., Jaumann S., Kuster	Special Wire Guide for On-machine Wire Electrical Discharge Dressing
	F., Boccadoro M.	of Metal Bonded Grinding Wheels, Annals of the CIRP, 2010, pp. 59(1):227–230
206	Weingartner E., Jaumann S.,	On-machine Wire Electrical Discharge Dressing (WEDD) of Metal
	Wegener K., Kuster F.	Bonded Grinding Wheels, International Journal of advanced
207	Wylecial, T., Radomiak, H., Urbaniak, D.	Manufacturing Technology, 2009, 45(9–12):1001–1007 <i>Modeling of the Process of Coal Grinding</i> , ISSN 0543-5846, METABK, 2013, pp. 52(2) 201-203
208	Xiaorui Fan, Michele Miller	<i>Force analysis for segmental grinding</i> , Michigan Technological University, Houghton, MI, 2009
209	Xie, J., Zheng, J.H., Zhou, R.M., Lin, B.	Dispersed grinding wheel profiles for accurate free form surfaces, International Journal of Machine Tools & Manufacture 51, 2011, pp. 536– 542
210	Xie J.	A Study on Surface Generation of Metal-bonded Diamond Grinding Wheel Dressed by Electro-Contact Discharge, Key Engineering Materials, 2006,
011	X 7. X X X X X X X X X X	pp. 304–305:76–80
211	Xie J., Liu Y.J., Tang Y.	Ground Surface Integrity of Granite by Using Dry Electro-contact Discharge Dressing of Diamond Grinding Wheel, Journal of Materials Processing Technology, 2009, pp. 209(18–19):6004–6009
212	Xie J., Tamaki J.	In-process Evaluation of Grit Protrusion Feature for Fine Diamond Grinding Wheel by Means of Electro-contact Discharge Dressing, Journal
213	Xie J., Tamaki J., Tang Y.	of Materials Processing Technology, (2006), 180:83–90 Arc Envelope Truing of Metal-bonded Diamond Grinding Wheel by Use of Cone-shaped Truer, Key Engineering Materials, 2006, pp. 315–316:421–
014	X7 , X7 X7 , X 7	424
214	Xipeng Xu, Yiqing Yu	Adhesion at abrasive-Ti6Al4V interface with elevated grinding temperatures, Journal of Materials Science Letters
215	Xuekun, Li	August, 2002, Volume 21, <u>Issue 16</u> , pp 1293-1295 Modeling and simulation of grinding processes based on a virtual wheel
215	Auckuli, Li	model and microscopic interaction analysis, 2010
216	Yamada K., Togo S., Tomita Y.,	Laser Assisted Truing for Metal-bonded Diamond Wheel, Key
217	Yamane Y., Sekiya K.	Engineering Materials, 2009, pp. 407–408:122–125
217	Yan, Y., Xu, J.	Suppressing Chatter in a Plunge Grinding Process: Application of Variable Rotational Speed of Workpiece, Applied Mechanics and
		Materials, Vols., 2013, pp. 249-250

218	Yoshihara N., Ma M., Yan J., Kariyagawa T.	<i>Electrolytic Conditioning of Resin–Metal-Bonded Diamond Grinding</i> <i>Wheels</i> , International Journal of Abrasive Technology, 2007, pp. 1(1):136–142
219	Yuan, Y., Li, B., Zhou, Z., Zhang, Q.	Study on the Simulation Model and Characteristics of High-Speed Grinding for Ceramics, Advanced Materials Research Vols. ,2012, pp. 138-139, pp 662-667
220	Zelwer, O., Malkin, s.	Grinding of WC-Co cemented carbides, Part 2, Ind. Diamond Rev. May, 1974, pp. 173-176
221	Zeng J.Y., Wu S., Kim T.J.	Development of Parameter Prediction Model for Abrasive Water Jet Truing, Proceedings 12th International Symposium on Jet Cutting Technology, 1994, pp. 601–617
222	Zhang C., Shin Y.C.	Wear of Diamond Dresser in Laser-assisted Truing and Dressing of Vitrified CBN Wheels, International Journal of Machine Tools & Manufacture, 2003, pp. 43:41–49
223	Zhao H. H., Feng B. F., Cai G. Q.	Study of Ultra-high Speed Grinding Mechanism with Molecular Dynamics Simulation, Key Engineering Materials, 2004, pp. 259-260:302-306
224	Zhong, Z.W., Venkatesh, V.C.	Recent developments in grinding of advanced materials, International Journal Advanced Manufactoring Technologies, 2009
225	Zhou L., Shimizu J., Muroya A.	<i>Material removal mechanism beyond plastic wave propagation rate</i> , Precision Engineering, vol. 27, 2003, pp. 109-116
226	Zhichao, Li	Modeling, Analysis, and Experimental Investigations of Grinding Processes, B. Eng., Tianjin University of Technology & Education, 2006
227	***	Note de curs
228	***	http://www.ro.wikipedia.org
229	***	http://www.foldoc.org/
230	***	http://en.wikipedia.org/wiki//Product_lifecycle_management
231	***	http://www.carbochim.ro
232	***	Training Guide DOE ++Relia Soft
233	***	www.kistler.com
234	***	http://www.diametal.ch/en/